Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 May 13:6:228.
doi: 10.3389/fimmu.2015.00228. eCollection 2015.

Mechanisms of autoantibody production in systemic lupus erythematosus

Affiliations
Review

Mechanisms of autoantibody production in systemic lupus erythematosus

Shuhong Han et al. Front Immunol. .

Abstract

Autoantibodies against a panoply of self-antigens are seen in systemic lupus erythematosus, but only a few (anti-Sm/RNP, anti-Ro/La, anti-dsDNA) are common. The common lupus autoantigens are nucleic acid complexes and levels of autoantibodies can be extraordinarily high. We explore why that is the case. Lupus is associated with impaired central or peripheral B-cell tolerance and increased circulating autoreactive B cells. However, terminal differentiation is necessary for autoantibody production. Nucleic acid components of the major lupus autoantigens are immunostimulatory ligands for toll-like receptor (TLR)7 or TLR9 that promote plasma cell differentiation. We show that the levels of autoantibodies against the U1A protein (part of a ribonucleoprotein) are markedly higher than autoantibodies against other antigens, including dsDNA and the non-nucleic acid-associated autoantigens insulin and thyroglobulin. In addition to driving autoantibody production, TLR7 engagement is likely to contribute to the pathogenesis of inflammatory disease in lupus.

Keywords: B cells; TLR7; autoantibodies; immune tolerance; innate immunity; lupus erythematosus; systemic.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Serum autoantibodies in SLE. Levels of serum IgG anti-U1A, dsDNA, insulin, and thyroglobulin autoantibodies were tested by ELISA in 23 consecutive SLE patients and 13 controls. SLE was classified using the ACR criteria. Healthy controls age and gender-matched had no history of systemic autoimmune disease. These studies were reviewed and approved by the University of Florida Institutional Review Board. (A) Antigens were coated on plastic wells at 0.8 μg/ml and sera were diluted 1:500 for screening. (B) ELISA titration curves (serial twofold dilutions) for the four sera most strongly reactive with each antigen. Patient ID number is shown in the key. (C) Frequencies of anti-dsDNA, anti-RNA-protein (rNP, anti-Sm, RNP, Ro/SS-A, and La/SS-B) autoantibodies detected by commercial ELISAs in a cohort of 106 SLE patients. Only 6% of the sera were unreactive with both dsDNA and the ribonucleoprotein autoantigens.
Figure 2
Figure 2
Proposed model of autoantibody generation in SLE. SLE is associated with genetic abnormalities that impair central or peripheral B-cell tolerance. In the presence of T-cell help, autoreactive B cells that escape censoring may develop into IgG-producing memory B cells. However, these cells can circulate without producing autoantibodies. Following subsequent antigen exposure, the memory cells enhance their expression of BLIMP-1 and develop into autoantibody-secreting plasma cells. In the case standard autoantigens, such as insulin, which engage only the B-cell receptor, the stimulus to undergo terminal (plasma cell) differentiation is weaker than in the case of RNA-associated autoantigens, such as U1A, which can activate terminal B-cell differentiation via both the B-cell receptor and TLR7. This may explain why levels of anti-U1A (RNP) autoantibodies are markedly higher than anti-insulin autoantibody levels.

Similar articles

Cited by

References

    1. Yaniv G, Twig G, Shor DB, Furer A, Sherer Y, Mozes O, et al. A volcanic explosion of autoantibodies in systemic lupus erythematosus: a diversity of 180 different antibodies found in SLE patients. Autoimmun Rev (2015) 14(1):75–9.10.1016/j.autrev.2014.10.003 - DOI - PubMed
    1. Giltiay NV, Chappell CP, Clark EA. B-cell selection and the development of autoantibodies. Arthritis Res Ther (2012) 14(Suppl 4):S1.10.1186/ar3918 - DOI - PMC - PubMed
    1. Mackay F, Schneider P. Cracking the BAFF code. Nat Rev Immunol (2009) 9(7):491–502.10.1038/nri2572 - DOI - PubMed
    1. Diamond B, Scharff MD. Somatic mutation of the T15 heavy chain gives rise to antibody with autoantibody specificity. Proc Natl Acad Sci U S A (1984) 81:5841–4.10.1073/pnas.81.18.5841 - DOI - PMC - PubMed
    1. Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC. Predominant autoantibody production by early human B cell precursors. Science (2003) 301(5638):1374–7.10.1126/science.1086907 - DOI - PubMed