Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Dec 15;290(3):440-50.
doi: 10.1002/cne.902900311.

Distribution of nuclear pores and chromatin organization in neurons and glial cells of the rat cerebellar cortex

Affiliations

Distribution of nuclear pores and chromatin organization in neurons and glial cells of the rat cerebellar cortex

L M Garcia-Segura et al. J Comp Neurol. .

Abstract

Nuclear pores were assessed on freeze-fracture replicas from different neuronal and glial cell types of the rat cerebellar cortex. Nuclear diameter and perimeter were measured on semithin sections, and nuclear surface area and volume were calculated from these data. The proportion of inner nuclear membrane in apposition to condensed chromatin was measured on thin sections. The values of nuclear pore numerical density (number/micron2) were as follows (mean +/- S.D.): Purkinje cells, 22 +/- 3; Golgi cells 17 +/- 3; granule cells, 6 +/- 4; stellate and basket cells, 6 +/- 1; protoplasmic astrocytes, 11 +/- 1; Bergmann glia, 10 +/- 1; oligodendrocytes, 6 +/- 1. The total number of nuclear pores per nucleus varied from 18,451 +/- 2,336 (Purkinje cells) to 621 +/- 394 (granule cells) among neurons, and from 1,782 +/- 162 (protoplasmic astrocytes) to 402 +/- 67 (oligodendrocytes) among glial cells. The number of nuclear pores per unit nuclear volume (number/micron3), a parameter related to nucleocytoplasmic transport capacity, varied from 15 +/- 2 in Purkinje cells to 6 +/- 4 in granule cells. The proportion of nuclear membrane free of condensed chromatin was significantly (P less than 0.01) correlated to pore numerical density and total number of pores per nucleus. Some nuclear pores were associated in clusters of two or more pores. The amount of pore clustering was measured by counting the proportion of pores associated in clusters. This proportion varied among the different cell types from 82% in Purkinje cells to 44% in stellate and basket cells. The amount of pore clustering showed a positive linear correlation to pore numerical density and pore number per nucleus. However, the proportion of pores in clusters was not significantly correlated with the amount of condensed chromatin applied against the inner nuclear membrane.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources