Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Mar 27:10:15.
doi: 10.1186/s13024-015-0010-2.

Selective loss of glucocerebrosidase activity in sporadic Parkinson's disease and dementia with Lewy bodies

Affiliations

Selective loss of glucocerebrosidase activity in sporadic Parkinson's disease and dementia with Lewy bodies

Davide Chiasserini et al. Mol Neurodegener. .

Abstract

Background: Lysosomal dysfunction is thought to be a prominent feature in the pathogenetic events leading to Parkinson's disease (PD). This view is supported by the evidence that mutations in GBA gene, coding the lysosomal hydrolase β-glucocerebrosidase (GCase), are a common genetic risk factor for PD. Recently, GCase activity has been shown to be decreased in substantia nigra and in cerebrospinal fluid of patients diagnosed with PD or dementia with Lewy Bodies (DLB). Here we measured the activity of GCase and other endo-lysosomal enzymes in different brain regions (frontal cortex, caudate, hippocampus, substantia nigra, cerebellum) from PD (n = 26), DLB (n = 16) and age-matched control (n = 13) subjects, screened for GBA mutations. The relative changes in GCase gene expression in substantia nigra were also quantified by real-time PCR. The role of potential confounders (age, sex and post-mortem delay) was also determined.

Findings: Substantia nigra showed a high activity level for almost all the lysosomal enzymes assessed. GCase activity was significantly decreased in the caudate (-23%) and substantia nigra (-12%) of the PD group; the same trend was observed in DLB. In both groups, a decrease in GCase mRNA was documented in substantia nigra. No other lysosomal hydrolase defects were determined.

Conclusion: The high level of lysosomal enzymes activity observed in substantia nigra, together with the selective reduction of GCase in PD and DLB patients, further support the link between lysosomal dysfunction and PD pathogenesis, favoring the possible role of GCase as biomarker of synucleinopathy. Mapping the lysosomal enzyme activities across different brain areas can further contribute to the understanding of the role of lysosomal derangement in PD and other synucleinopathies.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Lysosomal enzyme activities in human brain. a) Cluster analysis of lysosomal enzyme activities. Lysosomal specific activities were normalized with respect to their means and standard deviations, while patients were summarized using their respective diagnostic group; b) Boxplots of the GCase specific activity across different brain areas. In the table below the figure, the significant comparisons are reported according to the statistical model used; c) mRNA levels of GBA gene. 2-ΔCT values normalized by housekeeping genes GAPDH and SDHA. *p < 0.05 using Wilcoxon two groups test and nonparametric ANCOVA model with adjustment for post mortem delay.

Similar articles

Cited by

References

    1. Singleton AB, Farrer MJ, Bonifati V. The genetics of Parkinson’s disease: progress and therapeutic implications. Mov Disord. 2013;28:14–23. doi: 10.1002/mds.25249. - DOI - PMC - PubMed
    1. Lwin A, Orvisky E, Goker-Alpan O, LaMarca ME, Sidransky E. Glucocerebrosidase mutations in subjects with parkinsonism. Mol Genet Metab. 2004;81:70–3. doi: 10.1016/j.ymgme.2003.11.004. - DOI - PubMed
    1. Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, Barbosa ER, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med. 2009;361:1651–61. doi: 10.1056/NEJMoa0901281. - DOI - PMC - PubMed
    1. Aharon-Peretz J, Rosenbaum H, Gershoni-Baruch R. Mutations in the glucocerebrosidase gene and Parkinson’s disease in Ashkenazi Jews. N Engl J Med. 2004;351:1972–7. doi: 10.1056/NEJMoa033277. - DOI - PubMed
    1. Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, Caldwell GA, et al. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell. 2011;146:37–52. doi: 10.1016/j.cell.2011.06.001. - DOI - PMC - PubMed

Publication types