Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Apr 16;125(16):2553-7.
doi: 10.1182/blood-2014-10-608042. Epub 2015 Mar 9.

Elucidation of the EP defect in Diamond-Blackfan anemia by characterization and prospective isolation of human EPs

Affiliations
Free article

Elucidation of the EP defect in Diamond-Blackfan anemia by characterization and prospective isolation of human EPs

Deena Iskander et al. Blood. .
Free article

Abstract

Diamond-Blackfan anemia (DBA) is a disorder characterized by a selective defect in erythropoiesis. Delineation of the precise defect is hampered by a lack of markers that define cells giving rise to erythroid burst- and erythroid colony-forming unit (BFU-E and CFU-E) colonies, the clonogenic assays that quantify early and late erythroid progenitor (EEP and LEP) potential, respectively. By combining flow cytometry, cell-sorting, and single-cell clonogenic assays, we identified Lin(-)CD34(+)CD38(+)CD45RA(-)CD123(-)CD71(+)CD41a(-)CD105(-)CD36(-) bone marrow cells as EEP giving rise to BFU-E, and Lin(-)CD34(+/-)CD38(+)CD45RA(-)CD123(-)CD71(+)CD41a(-)CD105(+)CD36(+) cells as LEP giving rise to CFU-E, in a hierarchical fashion. We then applied these definitions to DBA and identified that, compared with controls, frequency, and clonogenicity of DBA, EEP and LEP are significantly decreased in transfusion-dependent but restored in corticosteroid-responsive patients. Thus, both quantitative and qualitative defects in erythroid progenitor (EP) contribute to defective erythropoiesis in DBA. Prospective isolation of defined EPs will facilitate more incisive study of normal and aberrant erythropoiesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms