Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2015 May;103(5):1289-96.e2.
doi: 10.1016/j.fertnstert.2015.01.030. Epub 2015 Mar 4.

Genetic mechanisms leading to primary amenorrhea in balanced X-autosome translocations

Affiliations
Free article
Case Reports

Genetic mechanisms leading to primary amenorrhea in balanced X-autosome translocations

Mariana Moysés-Oliveira et al. Fertil Steril. 2015 May.
Free article

Abstract

Objective: To map the X-chromosome and autosome breakpoints in women with balanced X-autosome translocations and primary amenorrhea, searching candidate genomic loci for female infertility.

Design: Retrospective and case-control study.

Setting: University-based research laboratory.

Patient(s): Three women with balanced X-autosome translocation and primary amenorrhea.

Intervention(s): Conventional cytogenetic methods, genomic array, array painting, fluorescence in situ hybridization, and quantitative reverse transcription-polymerase chain reaction.

Main outcome measure(s): Karyotype, copy number variation, breakpoint mapping, and gene expression levels.

Result(s): All patients presented with breakpoints in the Xq13q21 region. In two patients, the X-chromosome breakpoint disrupted coding sequences (KIAA2022 and ZDHHC15 genes). Although both gene disruptions caused absence of transcription in peripheral blood, there is no evidence that supports the involvement of these genes with ovarian function. The ZDHHC15 gene belongs to a conserved syntenic region that encompasses the FGF16 gene, which plays a role in female germ line development. The break in the FGF16 syntenic block may have disrupted the interaction between the FGF16 promoter and its cis-regulatory element. In the third patient, although both breakpoints are intergenic, a gene that plays a role in the DAX1 pathway (FHL2 gene) flanks distally the autosome breakpoint. The FHL2 gene may be subject to position effect due to the attachment of an autosome segment in Xq21 region.

Conclusion(s): The etiology of primary amenorrhea in balanced X-autosome translocation patients may underlie more complex mechanisms than interruption of specific X-linked candidate genes, such as position effect. The fine mapping of the rearrangement breakpoints may be a tool for identifying genetic pathogenic mechanisms for primary amenorrhea.

Keywords: X-chromosome; female fertility; position effect; primary amenorrhea; reciprocal translocation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources