RAPTR-SV: a hybrid method for the detection of structural variants
- PMID: 25686638
- DOI: 10.1093/bioinformatics/btv086
RAPTR-SV: a hybrid method for the detection of structural variants
Abstract
Motivation: Identification of structural variants (SVs) in sequence data results in a large number of false positive calls using existing software, which overburdens subsequent validation.
Results: Simulations using RAPTR-SV and other, similar algorithms for SV detection revealed that RAPTR-SV had superior sensitivity and precision, as it recovered 66.4% of simulated tandem duplications with a precision of 99.2%. When compared with calls made by Delly and LUMPY on available datasets from the 1000 genomes project, RAPTR-SV showed superior sensitivity for tandem duplications, as it identified 2-fold more duplications than Delly, while making ∼85% fewer duplication predictions.
Availability and implementation: RAPTR-SV is written in Java and uses new features in the collections framework in the latest release of the Java version 8 language specifications. A compiled version of the software, instructions for usage and test results files are available on the GitHub repository page: https://github.com/njdbickhart/RAPTR-SV.
Contact: derek.bickhart@ars.usda.gov.
Published by Oxford University Press 2015. This work is written by US Government employees and is in the public domain in the US.
Similar articles
-
DELLY: structural variant discovery by integrated paired-end and split-read analysis.Bioinformatics. 2012 Sep 15;28(18):i333-i339. doi: 10.1093/bioinformatics/bts378. Bioinformatics. 2012. PMID: 22962449 Free PMC article.
-
SVmine improves structural variation detection by integrative mining of predictions from multiple algorithms.Bioinformatics. 2017 Nov 1;33(21):3348-3354. doi: 10.1093/bioinformatics/btx455. Bioinformatics. 2017. PMID: 29036467
-
Use of RAPTR-SV to Identify SVs from Read Pairing and Split Read Signatures.Methods Mol Biol. 2018;1833:143-153. doi: 10.1007/978-1-4939-8666-8_11. Methods Mol Biol. 2018. PMID: 30039370
-
A decade of structural variants: description, history and methods to detect structural variation.Brief Funct Genomics. 2015 Sep;14(5):305-14. doi: 10.1093/bfgp/elv014. Epub 2015 Apr 15. Brief Funct Genomics. 2015. PMID: 25877305 Review.
-
Geographic distribution and adaptive significance of genomic structural variants: an anthropological genetics perspective.Hum Biol. 2014 Fall;86(4):260-75. doi: 10.13110/humanbiology.86.4.0260. Hum Biol. 2014. PMID: 25959693 Review.
Cited by
-
Genomic structural differences between cattle and River Buffalo identified through comparative genomic and transcriptomic analysis.Data Brief. 2018 May 10;19:236-239. doi: 10.1016/j.dib.2018.05.015. eCollection 2018 Aug. Data Brief. 2018. PMID: 29892639 Free PMC article.
-
Comprehensive evaluation and characterisation of short read general-purpose structural variant calling software.Nat Commun. 2019 Jul 19;10(1):3240. doi: 10.1038/s41467-019-11146-4. Nat Commun. 2019. PMID: 31324872 Free PMC article.
-
Lessons for livestock genomics from genome and transcriptome sequencing in cattle and other mammals.Genet Sel Evol. 2016 Aug 17;48(1):59. doi: 10.1186/s12711-016-0237-6. Genet Sel Evol. 2016. PMID: 27534529 Free PMC article.
-
Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing.Genome Biol. 2019 Jun 3;20(1):117. doi: 10.1186/s13059-019-1720-5. Genome Biol. 2019. PMID: 31159850 Free PMC article.
-
Wham: Identifying Structural Variants of Biological Consequence.PLoS Comput Biol. 2015 Dec 1;11(12):e1004572. doi: 10.1371/journal.pcbi.1004572. eCollection 2015 Dec. PLoS Comput Biol. 2015. PMID: 26625158 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources