Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jul;30(1):50-60.
doi: 10.1177/0885328215569891. Epub 2015 Feb 3.

Simple surface coating of electrospun poly-L-lactic acid scaffolds to induce angiogenesis

Affiliations

Simple surface coating of electrospun poly-L-lactic acid scaffolds to induce angiogenesis

Giulia Gigliobianco et al. J Biomater Appl. 2015 Jul.

Abstract

Tissue-engineered constructs often fail due to poor integration with the patient's tissues. Specifically, they fail to be neovascularised, leading to the death and loss of the implanted tissues. Thus, there is a need to produce angiogenic materials to improve tissue integration. We describe the development of a layer-by-layer approach to coat electrospun scaffolds to help promote angiogenesis into these biomaterials once implanted. Electrospun poly-L-lactic acid was coated comparing two different techniques - one using alternative layers of polyethyleneImine (PEI) and polyacrylic Acid (PAC) and one with alternative layers of PEI and heparin for a total of seven layers in both cases. Both scaffolds were then coated with heparin as the final layer. The scaffold coated with alternate PEI and PAC showed a clear ability to bind the most heparin. This scaffold was then studied further for its ability to bind vascular endothelial growth factor, which was confirmed using an ELISA. The scaffold coated with seven alternate layers of PEI and PAC and heparin was then implanted in a chick chorionic allantoic membrane (CAM) assay. After a period of 7 days in the CAM, the coated scaffold showed strong angiogenic activity. In contrast, the uncoated scaffolds did not promote angiogenesis. We conclude that this approach to functionalising scaffolds is effective within a clinically relevant time period (7 days in an in-vivo angiogenic model) and suggest this will be useful for improving integration of scaffolds once implanted.

Keywords: ELISA; Poly-L-lactic acid; chick chorionic allantoic membrane; electrospinning; heparin; layer-by-layer; plasma polymerisation; vascular endothelial growth factor.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources