Investigating Hydrophilic Pores in Model Lipid Bilayers Using Molecular Simulations: Correlating Bilayer Properties with Pore-Formation Thermodynamics
- PMID: 25614183
- PMCID: PMC4934177
- DOI: 10.1021/la504049q
Investigating Hydrophilic Pores in Model Lipid Bilayers Using Molecular Simulations: Correlating Bilayer Properties with Pore-Formation Thermodynamics
Abstract
Cell-penetrating and antimicrobial peptides show a remarkable ability to translocate across physiological membranes. Along with factors such as electric-potential-induced perturbations of membrane structure and surface tension effects, experiments invoke porelike membrane configurations during the solute transfer process into vesicles and cells. The initiation and formation of pores are associated with a nontrivial free-energy cost, thus necessitating a consideration of the factors associated with pore formation and the attendant free energies. Because of experimental and modeling challenges related to the long time scales of the translocation process, we use umbrella sampling molecular dynamics simulations with a lipid-density-based order parameter to investigate membrane-pore-formation free energy employing Martini coarse-grained models. We investigate structure and thermodynamic features of the pore in 18 lipids spanning a range of headgroups, charge states, acyl chain lengths, and saturation. We probe the dependence of pore-formation barriers on the area per lipid, lipid bilayer thickness, and membrane bending rigidities in three different lipid classes. The pore-formation free energy in pure bilayers and peptide translocating scenarios are significantly coupled with bilayer thickness. Thicker bilayers require more reversible work to create pores. The pore-formation free energy is higher in peptide-lipid systems than in peptide-free lipid systems due to penalties to maintain the solvation of charged hydrophilic solutes within the membrane environment.
Figures
Similar articles
-
Translocation thermodynamics of linear and cyclic nonaarginine into model DPPC bilayer via coarse-grained molecular dynamics simulation: implications of pore formation and nonadditivity.J Phys Chem B. 2014 Mar 13;118(10):2670-82. doi: 10.1021/jp412600e. Epub 2014 Feb 26. J Phys Chem B. 2014. PMID: 24506488 Free PMC article.
-
The importance of membrane defects-lessons from simulations.Acc Chem Res. 2014 Aug 19;47(8):2244-51. doi: 10.1021/ar4002729. Epub 2014 Jun 3. Acc Chem Res. 2014. PMID: 24892900
-
Thermodynamics of cell-penetrating HIV1 TAT peptide insertion into PC/PS/CHOL model bilayers through transmembrane pores: the roles of cholesterol and anionic lipids.Soft Matter. 2016 Aug 10;12(32):6716-27. doi: 10.1039/c5sm01696g. Soft Matter. 2016. PMID: 27435187
-
Membrane pore formation in atomistic and coarse-grained simulations.Biochim Biophys Acta. 2016 Oct;1858(10):2266-2277. doi: 10.1016/j.bbamem.2015.12.031. Epub 2015 Dec 31. Biochim Biophys Acta. 2016. PMID: 26748016 Review.
-
How Lipid Membranes Affect Pore Forming Toxin Activity.Acc Chem Res. 2015 Dec 15;48(12):3073-9. doi: 10.1021/acs.accounts.5b00403. Epub 2015 Dec 7. Acc Chem Res. 2015. PMID: 26641659 Review.
Cited by
-
All-atom molecular dynamics simulations of the combined effects of different phospholipids and cholesterol content on electroporation.RSC Adv. 2022 Aug 30;12(38):24491-24500. doi: 10.1039/d2ra03895a. eCollection 2022 Aug 30. RSC Adv. 2022. PMID: 36128384 Free PMC article.
-
Coupling of Membrane Nanodomain Formation and Enhanced Electroporation near Phase Transition.Biophys J. 2019 Jun 4;116(11):2131-2148. doi: 10.1016/j.bpj.2019.04.024. Epub 2019 Apr 30. Biophys J. 2019. PMID: 31103234 Free PMC article.
-
Effect of Force Field Resolution on Membrane Mechanical Response and Mechanoporation Damage under Deformation Simulations.Mol Biotechnol. 2024 Apr;66(4):865-875. doi: 10.1007/s12033-023-00726-x. Epub 2023 Apr 4. Mol Biotechnol. 2024. PMID: 37016179
-
Coarse-grained simulations of hemolytic peptide δ-lysin interacting with a POPC bilayer.Biochim Biophys Acta. 2016 Dec;1858(12):3182-3194. doi: 10.1016/j.bbamem.2016.10.004. Epub 2016 Oct 6. Biochim Biophys Acta. 2016. PMID: 27720634 Free PMC article.
-
Identification of electroporation sites in the complex lipid organization of the plasma membrane.Elife. 2022 Feb 23;11:e74773. doi: 10.7554/eLife.74773. Elife. 2022. PMID: 35195069 Free PMC article.
References
-
- Drew Bennett WF, Peter Tieleman D. The Importance of Membrane Defects-Lessons from Simulations. Acc Chem Res. 2014;47:2244–2251. - PubMed
-
- Anderluh G, Lakey JH. Proteins: membrane binding and pore formation. Vol. 677 Springer; 2011. - PubMed
-
- Tabaei SR, Rabe M, Zhdanov VP, Cho NJ, Hook F. Single Vesicle Analysis Reveals Nanoscale Membrane Curvature Selective Pore Formation in Lipid Membranes by an Antiviral-Helical Peptide. Nano Letters. 2012;12:5719–5725. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources