Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014;15 Suppl 7(Suppl 7):S1.
doi: 10.1186/1471-2164-15-S7-S1. Epub 2014 Oct 27.

RNA-sequencing analysis of Trichophyton rubrum transcriptome in response to sublethal doses of acriflavine

RNA-sequencing analysis of Trichophyton rubrum transcriptome in response to sublethal doses of acriflavine

Gabriela Felix Persinoti et al. BMC Genomics. 2014.

Abstract

Background: The dermatophyte Trichophyton rubrum is an anthropophilic filamentous fungus that infects keratinized tissues and is the most common etiologic agent isolated in human dermatophytoses. The clinical treatment of these infections is challenging because only few antifungal drugs are commercially available. To understand the mode of action of cytotoxic drugs against fungi, we evaluated the time-dependent effects of acriflavine on T. rubrum transcriptome using high-throughput RNA-sequencing (RNA-seq) technology.

Results: RNA-seq analysis generated approximately 200 million short reads that were mapped to the Broad Institute's Dermatophyte Comparative Database before differential gene expression analysis was performed. By employing a stringent cut-off threshold of -1.5 and 1.5 log₂-fold changes in gene expression, a subset of 490 unique genes were found to be modulated in T. rubrum in response to acriflavine exposure. Among the selected genes, 69 genes were modulated at all exposure time points. Functional categorization indicated the putative involvement of these genes in various cellular processes such as oxidation-reduction reaction, transmembrane transport, and metal ion binding. Interestingly, genes putatively involved in the pathogenicity of dermatophytoses were down-regulated suggesting that this drug interferes with the virulence of T. rubrum. Moreover, we identified 159 novel putative transcripts in intergenic regions and two transcripts in intron regions of T. rubrum genome.

Conclusion: The results provide insights into the molecular events underlying the stress responses of T. rubrum to acriflavine, revealing that this drug interfered with important molecular events involved in the establishment and maintenance of fungal infection in the host. In addition, the identification of novel transcripts will further enable the improvement of gene annotation and open reading frame prediction of T. rubrum and other dermatophyte genomes.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Acriflavine-induced differential gene expression. (A) Venn diagram illustrates the time-dependent differential expression of 490 genes of Trichophyton rubrum, after exposure to acriflavine for 3, 12, and 24 h, compared to the control (0 h). (B) Illustration of the number of up- or down-regulated genes in each experimental condition.
Figure 2
Figure 2
Gene ontology-based functional categorization of the differentially expressed genes. The significantly enriched (p < 0.05) GO categories are represented, with the red and green bars indicating the number of up- and down-regulated genes, respectively.
Figure 3
Figure 3
Validation of differentially expressed genes using quantitative real-time PCR (qRT-PCR). Six genes that were modulated in response to acriflavine were amplified using the cDNA obtained from the mycelia of T. rubrum exposed to acriflavine for 3, 12, and 24 h. The gene expression levels are represented by the fold changes at each time point relative to the control (0 h). The genes are listed in Table 3. The results of the qRT-PCR assay, from two independent experiments, are expressed as mean ± standard deviation (S.D). Statistical significance was determined using Bonferroni's ad hoc test and indicated by asterisks: * indicates p < 0.05; ** indicates p < 0.01; *** indicates p < 0.001.
Figure 4
Figure 4
Validation of differentially expressed genes using quantitative real-time PCR (qRT-PCR). Six genes that were modulated in response to acriflavine were amplified using the cDNA obtained from the mycelia of T. rubrum exposed to acriflavine for 3, 12, and 24 h. The gene expression levels are represented by the fold changes at each time point relative to the control (0 h). The genes are listed in Table 3. The results of the qRT-PCR assay, from two independent experiments, are expressed as mean ± standard deviation (S.D). Statistical significance was determined using Bonferroni's ad hoc test and indicated by asterisks: * indicates p < 0.05; ** indicates p < 0.01; *** indicates p < 0.001.
Figure 5
Figure 5
Validation of differentially expressed genes using quantitative real-time PCR (qRT-PCR). Six genes that were modulated in response to acriflavine were amplified using the cDNA obtained from the mycelia of T. rubrum exposed to acriflavine for 3, 12, and 24 h. The gene expression levels are represented by the fold changes at each time point relative to the control (0 h). The genes are listed in Table 3. The results of the qRT-PCR assay, from two independent experiments, are expressed as mean ± standard deviation (S.D). Statistical significance was determined using Bonferroni's ad hoc test and indicated by asterisks: * indicates p < 0.05; ** indicates p < 0.01; *** indicates p < 0.001.
Figure 6
Figure 6
RT-PCR assay of novel transcribed regions. (A-E) The nucleotide sequence of each transcript in Trichophyton rubrum genome is presented in Additional file 5: Table S3. The lanes labeled M, 1, 2, 3, 4 and 5 represents the 1 kb plus molecular weight ladder, the T. rubrum genomic DNA, T. rubrum cDNA before and after acriflavine exposure for 0, 3, 12, and 24 h, respectively. (F) The actin gene was used as a control. The primers used to amplify both the actin gene and the transcripts were designed to flank an intron of the gene.

Similar articles

Cited by

References

    1. Segato F, Nozawa SR, Rossi A, Martinez-Rossi NM. Over-expression of genes coding for proline oxidase, riboflavin kinase, cytochrome c oxidase and an MFS transporter induced by acriflavin in Trichophyton rubrum. Med Mycol. 2008;46(2):135–139. doi: 10.1080/13693780701742381. - DOI - PubMed
    1. Belmont P, Bosson J, Godet T, Tiano M. Acridine and acridone derivatives, anticancer properties and synthetic methods: where are we now? Anticancer Agents Med Chem. 2007;7(2):139–169. doi: 10.2174/187152007780058669. - DOI - PubMed
    1. Wainwright M. Acridine - a neglected antibacterial chromophore. J Antimicrob Chemother. 2001;47(1):1–13. doi: 10.1093/jac/47.1.1. - DOI - PubMed
    1. Avers CJ, Pfeffer CR, Rancourt MW. Acriflavine Induction of Different Kinds of "Petite" Mitochondrial Populations in Saccharomyces cerevisiae. J Bacteriol. 1965;90:481–494. - PMC - PubMed
    1. Ferguson LR, Denny WA. Genotoxicity of non-covalent interactions: DNA intercalators. Mutat Res. 2007;623(1-2):14–23. doi: 10.1016/j.mrfmmm.2007.03.014. - DOI - PubMed

Publication types

MeSH terms