Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014;8 Suppl 5(Suppl 5):S2.
doi: 10.1186/1752-0509-8-S5-S2. Epub 2014 Dec 12.

Identifying cooperative transcription factors in yeast using multiple data sources

Identifying cooperative transcription factors in yeast using multiple data sources

Fu-Jou Lai et al. BMC Syst Biol. 2014.

Abstract

Background: Transcriptional regulation of gene expression is usually accomplished by multiple interactive transcription factors (TFs). Therefore, it is crucial to understand the precise cooperative interactions among TFs. Various kinds of experimental data including ChIP-chip, TF binding site (TFBS), gene expression, TF knockout and protein-protein interaction data have been used to identify cooperative TF pairs in existing methods. The nucleosome occupancy data is not yet used for this research topic despite that several researches have revealed the association between nucleosomes and TFBSs.

Results: In this study, we developed a novel method to infer the cooperativity between two TFs by integrating the TF-gene documented regulation, TFBS and nucleosome occupancy data. TF-gene documented regulation and TFBS data were used to determine the target genes of a TF, and the genome-wide nucleosome occupancy data was used to assess the nucleosome occupancy on TFBSs. Our method identifies cooperative TF pairs based on two biologically plausible assumptions. If two TFs cooperate, then (i) they should have a significantly higher number of common target genes than random expectation and (ii) their binding sites (in the promoters of their common target genes) should tend to be co-depleted of nucleosomes in order to make these binding sites simultaneously accessible to TF binding. Each TF pair is given a cooperativity score by our method. The higher the score is, the more likely a TF pair has cooperativity. Finally, a list of 27 cooperative TF pairs has been predicted by our method. Among these 27 TF pairs, 19 pairs are also predicted by existing methods. The other 8 pairs are novel cooperative TF pairs predicted by our method. The biological relevance of these 8 novel cooperative TF pairs is justified by the existence of protein-protein interactions and co-annotation in the same MIPS functional categories. Moreover, we adopted three performance indices to compare our predictions with 11 existing methods' predictions. We show that our method performs better than these 11 existing methods in identifying cooperative TF pairs in yeast. Finally, the cooperative TF network constructed from the 27 predicted cooperative TF pairs shows that our method has the power to find cooperative TF pairs of different biological processes.

Conclusion: Our method is effective in identifying cooperative TF pairs in yeast. Many of our predictions are validated by the literature, and our method outperforms 11 existing methods. We believe that our study will help biologists to understand the mechanisms of transcriptional regulation in eukaryotic cells.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Flowchart of our method. The figure shows a schematic description of the steps used for determining the cooperativity score of two TFs. In the 2 × 2 contingency table, the D.N. stands for depletion of nucleosomes while O.N. stands for occupancy of nucleosomes.
Figure 2
Figure 2
Comparison of our method with 11 existing methods based on three performance indices. This figures shows the comparison results of our methods with 11 existing methods using (a) the performance index 1, (b) the performance index 2, and (c) the performance index 3. Note that T stands for our method, A1 for Banerjee and Zhang' s method, A2 for Chang et al.'s method, A3 for Chen et al.'s method, A4 for Datta and Zhao's method, A5 for Elati et al.'s method, A6 for He et al.'s method, A7 for Nagamne et al.'s method, A8 for Tsai et al.'s method, A9 for Wang's method, A10 for Yang et al.'s method, and A11 for Yu et al.'s method.
Figure 3
Figure 3
The performance of our method when using different thresholds of the cooperativity score. To check the robustness of our method against different thresholds of cooperativity scores, we tested four different thresholds (125, 120, 110 and 90). The figure shows that no matter which threshold is used, the performance of our method is always the same (i.e. superior to 10 out of 11 existing methods) on the performance index 1. This suggests that our method is robust against different thresholds of the cooperativity score.
Figure 4
Figure 4
The performance of our method when using the TFBS data with different qualities. To check the robustness of our method against different TFBS qualities, we tested four different posterior probability thresholds (0.2, 0.3, 0.4 and 0.5). The figure shows that no matter which threshold is used, the performance of our method is always the same (i.e. superior to 10 out of 11 existing methods) on the performance index 1. This suggests that our method is robust against different thresholds of posterior probability to control the TFBS quality.
Figure 5
Figure 5
Comparison of our method with 11 existing methods based on the precision and recall when using a benchmark set of 27 known cooperative TF pairs. Here, we use the precision and recall to evaluate the performance of a method. The figure shows that our method outperforms 11 existing methods in the precision and outperforms 10 existing methdos in the recall.
Figure 6
Figure 6
The performance of our method with/without using nucleosome occupancy data. To demonstrate that nucleosome occupancy data contributes to the overall improved prediction, we tested our method when nucleosome data are used (denoted as T w/ Nucleosome) and when nucleosome data are not used (denoted as T w/o Nucleosome) on the performance index 1. The figure shows that the −logP of T w/ Nucleosome is higher than that of T w/o Nucleosome, suggesting that nucleosome occupancy data do contribute to the overall improved prediction of our method.
Figure 7
Figure 7
A TF cooperativity network. A TF cooperativity network is constructed from our 27 predicted cooperative TF pairs. Nodes represent TFs. A black line between two TFs means that these two TFs are predicted to be a cooperative TF pair but they are not annotated in the same MIPS functional category. A colored line between two TFs means that these two TFs are predicted to be a cooperative TF pair and they are annotated in the same MIPS functional category. The green color stands for metabolism, red for cell cycle, blue for cell type differentiation, orange for cell rescue, defense and virulence.

Similar articles

Cited by

References

    1. Yu X, Lin J, Masuda T, Esumi N, Zack DJ, Qian J. Genome-wide prediction and characterization of interactions between transcription factors in Saccharomyces cerevisiae. Nucleic Acids Res. 2006;34(3):917–927. doi: 10.1093/nar/gkj487. - DOI - PMC - PubMed
    1. Datta D, Zhao H. Statistical methods to infer cooperative binding among transcription factors in Saccharomyces cerevisiae. Bioinformatics. 2008;24(4):545–552. doi: 10.1093/bioinformatics/btm523. - DOI - PubMed
    1. Chen MJM, Chou LC, Hsieh TT, Lee DD, Liu KW, Yu CY, Oyang YJ, Tsai HK, Chen CY. De novo motif discovery facilitates identification of interactions between transcription factors in Saccharomyces cerevisiae. Bioinformatics. 2012;28(5):701–708. doi: 10.1093/bioinformatics/bts002. - DOI - PubMed
    1. Banerjee N, Zhang MQ. Identifying cooperativity among transcription factors controlling the cell cycle in yeast. Nucleic Acids Res. 2003;31(23):7024–7031. doi: 10.1093/nar/gkg894. - DOI - PMC - PubMed
    1. Tsai HK, Lu HHS, Li WH. Statistical methods for identifying yeast cell cycle transcription factors. Proc Natl Acad Sci USA. 2005;102(38):13532–13537. doi: 10.1073/pnas.0505874102. - DOI - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources