Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting
- PMID: 25547808
- PMCID: PMC4306504
- DOI: 10.1021/bc500408p
Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting
Abstract
Mitochondria are critical regulators of cellular function and survival. Delivery of therapeutic and diagnostic agents into mitochondria is a challenging task in modern pharmacology because the molecule to be delivered needs to first overcome the cell membrane barrier and then be able to actively target the intracellular organelle. Current strategy of conjugating either a cell penetrating peptide (CPP) or a subcellular targeting sequence to the molecule of interest only has limited success. We report here a dual peptide conjugation strategy to achieve effective delivery of a non-membrane-penetrating dye 5-carboxyfluorescein (5-FAM) into mitochondria through the incorporation of both a mitochondrial targeting sequence (MTS) and a CPP into one conjugated molecule. Notably, circular dichroism studies reveal that the combined use of α-helix and PPII-like secondary structures has an unexpected, synergistic contribution to the internalization of the conjugate. Our results suggest that although the use of positively charged MTS peptide allows for improved targeting of mitochondria, with MTS alone it showed poor cellular uptake. With further covalent linkage of the MTS-5-FAM conjugate to a CPP sequence (R8), the dually conjugated molecule was found to show both improved cellular uptake and effective mitochondria targeting. We believe these results offer important insight into the rational design of peptide conjugates for intracellular delivery.
Figures
Similar articles
-
Bifunctional peptide hybrids targeting the matrix of mitochondria.J Control Release. 2018 Dec 10;291:147-156. doi: 10.1016/j.jconrel.2018.10.029. Epub 2018 Oct 24. J Control Release. 2018. PMID: 30367921
-
Novel cell-penetrating peptide targeting mitochondria.FASEB J. 2015 Nov;29(11):4589-99. doi: 10.1096/fj.14-269225. Epub 2015 Jul 20. FASEB J. 2015. PMID: 26195590
-
Enhanced cellular delivery of cell-penetrating peptide-peptide nucleic acid conjugates by photochemical internalization.Methods Mol Biol. 2011;683:391-7. doi: 10.1007/978-1-60761-919-2_28. Methods Mol Biol. 2011. PMID: 21053145
-
An update on cell-penetrating peptides with intracellular organelle targeting.Expert Opin Drug Deliv. 2022 Feb;19(2):133-146. doi: 10.1080/17425247.2022.2034784. Epub 2022 Feb 8. Expert Opin Drug Deliv. 2022. PMID: 35086398 Review.
-
Peptide-Mediated Delivery of Chemical Probes and Therapeutics to Mitochondria.Acc Chem Res. 2016 Sep 20;49(9):1893-902. doi: 10.1021/acs.accounts.6b00277. Epub 2016 Aug 16. Acc Chem Res. 2016. PMID: 27529125 Review.
Cited by
-
Mitochondria-Targeted Nanocarriers Promote Highly Efficient Cancer Therapy: A Review.Front Bioeng Biotechnol. 2021 Nov 12;9:784602. doi: 10.3389/fbioe.2021.784602. eCollection 2021. Front Bioeng Biotechnol. 2021. PMID: 34869294 Free PMC article. Review.
-
Gallic acid-mitochondria targeting sequence-H3R9 induces mitochondria-targeted cytoprotection.Korean J Physiol Pharmacol. 2022 Jan 1;26(1):15-24. doi: 10.4196/kjpp.2022.26.1.15. Korean J Physiol Pharmacol. 2022. PMID: 34965992 Free PMC article.
-
Peptide-drug conjugates as effective prodrug strategies for targeted delivery.Adv Drug Deliv Rev. 2017 Feb;110-111:112-126. doi: 10.1016/j.addr.2016.06.015. Epub 2016 Jun 29. Adv Drug Deliv Rev. 2017. PMID: 27370248 Free PMC article. Review.
-
Cationic Surfactants: Self-Assembly, Structure-Activity Correlation and Their Biological Applications.Int J Mol Sci. 2019 Nov 6;20(22):5534. doi: 10.3390/ijms20225534. Int J Mol Sci. 2019. PMID: 31698783 Free PMC article. Review.
-
A peptide for transcellular cargo delivery: Structure-function relationship and mechanism of action.J Control Release. 2020 Aug 10;324:633-643. doi: 10.1016/j.jconrel.2020.05.030. Epub 2020 May 28. J Control Release. 2020. PMID: 32474121 Free PMC article.
References
-
- Kroemer G.; Galluzzi L.; Brenner C. (2007) Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99–163. - PubMed
-
- Lin M. T.; Beal M. F. (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787–795. - PubMed
-
- Fulda S.; Galluzzi L.; Kroemer G. (2010) Targeting mitochondria for cancer therapy. Nat. Rev. Drug Discovery 9, 447–464. - PubMed
-
- Abadir P. M.; Foster D. B.; Crow M.; Cooke C. A.; Rucker J. J.; Jain A.; Smith B. J.; Burks T. N.; Cohn R. D.; Fedarko N. S.; Carey R. M.; O’Rourke B.; Walston J. D. (2011) Identification and characterization of a functional mitochondrial angiotensin system. Proc. Natl. Acad. Sci. U.S.A. 108, 14849–14854. - PMC - PubMed
-
- Muratovska A.; Lightowlers R. N.; Taylor R. W.; Turnbull D. M.; Smith R. A. J.; Wilce J. A.; Martin S. W.; Murphy M. P. (2001) Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease. Nucleic Acids Res. 29, 1852–1863. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources