Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Oct;21(10):416-26.
doi: 10.1038/cgt.2014.45. Epub 2014 Sep 19.

MDA-7/IL-24 inhibits Nrf2-mediated antioxidant response through activation of p38 pathway and inhibition of ERK pathway involved in cancer cell apoptosis

Affiliations

MDA-7/IL-24 inhibits Nrf2-mediated antioxidant response through activation of p38 pathway and inhibition of ERK pathway involved in cancer cell apoptosis

H Tian et al. Cancer Gene Ther. 2014 Oct.

Abstract

Reactive oxygen species (ROS) have a crucial role in melanoma differentiation-associated gene-7 (MDA-7)/interleukin-24 (IL-24)-induced cancer cell apoptosis. However, cancer cell has a series of protective mechanisms to resist ROS damage. Nuclear factor erythroid 2-related factor 2 (Nrf2) activates antioxidant response element (ARE)-mediated gene expression involved in cellular protection against oxidative stress. As the Nrf2 repressor, Kelch-like ECH-associated protein-1 (Keap1) sequesters Nrf2 in cytoplasm to block Nrf2 nuclear translocation. In the present study, administration of MDA-7/IL-24 by means of tumor-selective replicating adenovirus (ZD55-IL-24) was used to investigate whether ZD55-IL-24 could attenuate Nrf2-mediated oxidative stress response in cancer cell. We found that ZD55-IL-24 effectively strengthened the association between Nrf2 and Keap1 to restrict Nrf2 nuclear translocation, thereby inhibiting ARE-dependent transcriptional response. To evaluate the detailed mechanism underlying the suppression of ZD55-IL-24 on Nrf2-mediated oxidative stress response, we further tested three different mitogen-activated protein kinase (MAPK) signaling pathways in A549 and HeLa cells transfected by ZD55-IL-24. Our data showed that ZD55-IL-24 inhibited extracellular signal-regulated kinase (ERK) signal pathway but activated p38 and c-Jun-NH2-kinase (JNK) signal pathways to exert the tumor-specific apoptosis. Moreover, ERK pathway inhibitor U0126 prevented Nrf2 phosphorylation at Ser40 to retard Nrf2 nuclear translocation, thus decreasing antioxidant gene transcription. In contrast, p38 pathway inhibitor SB203580 obviously promoted the dissociation of Nrf2 from Keap1 to promote antioxidant gene transcription. However, JNK pathway had no effect on Nrf2 subcellular localization or the association of Nrf2 with Keap1. Conclusively, our results indicate that ZD55-IL-24 inhibits Nrf2-mediated oxidative stress response not only by activating p38 signal pathway to potentiate the association of Nrf2 and Keap1 but also by suppressing ERK signal pathway to postpone Nrf2 nuclear translocation. Given the 'dark' side of Nrf2 on carcinoma cell survival and chemoresistance, our study provides a novel explanation about MDA-7/IL-24-induced cancer-specific apoptosis and therapeutic sensitization through suppression of the cytoprotective system.

PubMed Disclaimer

Similar articles

Cited by

References

    1. PLoS One. 2009 Aug 11;4(8):e6588 - PubMed
    1. Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):10054-9 - PubMed
    1. Pharmacol Ther. 2010 Nov;128(2):375-84 - PubMed
    1. Toxicology. 2012 Feb 6;292(1):23-32 - PubMed
    1. Proc Natl Acad Sci U S A. 2004 Feb 17;101(7):2040-5 - PubMed

Publication types

MeSH terms

Substances