Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun 4;21(1):54.
doi: 10.1186/1423-0127-21-54.

Structural and functional characterization of MERS coronavirus papain-like protease

Affiliations

Structural and functional characterization of MERS coronavirus papain-like protease

Min-Han Lin et al. J Biomed Sci. .

Abstract

Backgrounds: A new highly pathogenic human coronavirus (CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), has emerged in Jeddah and Saudi Arabia and quickly spread to some European countries since September 2012. Until 15 May 2014, it has infected at least 572 people with a fatality rate of about 30% globally. Studies to understand the virus and to develop antiviral drugs or therapy are necessary and urgent. In the present study, MERS-CoV papain-like protease (PLpro) is expressed, and its structural and functional consequences are elucidated.

Results: Circular dichroism and Tyr/Trp fluorescence analyses indicated that the secondary and tertiary structure of MERS-CoV PLpro is well organized and folded. Analytical ultracentrifugation analyses demonstrated that MERS-CoV PLpro is a monomer in solution. The steady-state kinetic and deubiquitination activity assays indicated that MERS-CoV PLpro exhibits potent deubiquitination activity but lower proteolytic activity, compared with SARS-CoV PLpro. A natural mutation, Leu105, is the major reason for this difference.

Conclusions: Overall, MERS-CoV PLpro bound by an endogenous metal ion shows a folded structure and potent proteolytic and deubiquitination activity. These findings provide important insights into the structural and functional properties of coronaviral PLpro family, which is applicable to develop strategies inhibiting PLpro against highly pathogenic coronaviruses.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Expression and purification of recombinant MERS-CoV PLpro. (A) Protein identification by SDS-PAGE. M: molecular marker. Lane 1–4: cytoplasmic fraction, flow-through, elution from the nickel affinity column and protein fraction from S-100 gel-filtration column. (B) and (C) Protein sequence identification by mass spectrometry. The PLpro was digested by trypsin and then analyzed by MALDI mass spectrometry. There are 15 matched peptides observed (B) and 60% sequence coverage are shown in bold red (C).
Figure 2
Figure 2
CD spectrum of MERS-CoV PLpro. The protein of 1 mg/ml was suspended in 50 mM phosphate pH 6.5 and the CD values were measured from 240 to 190 nm at 20°C. The obtained spectrum is shown as close circles and the best fit by CDSSTR [16] is shown by solid line. The normalized root mean square deviation is 0.015.
Figure 3
Figure 3
Fluorescence spectrum of MERS-CoV PLpro. The protein of 1 μM was dissolved in 50 mM phosphate pH 6.5 (closed circles) or 9 M urea (open circles) and excited with 280 nm UV light. The protein fluorescence emission was monitored from 300 to 400 nm at 25°C.
Figure 4
Figure 4
The continuous size distribution change of MERS-CoV PLpro. (A) Traces of absorbance at 280 nm of the enzyme in the 50 mM phosphate pH 6.5 during the SV experiment. The protein concentration was 1 mg/ml. For clarity, only every four scan is shown. The symbols represent experimental data and the lines are the results obtained after fitted to the Lamm equation using the SEDFIT program [23,26]. (B) and (C) show the continuous c(s) and c(M) distribution of PLpro, respectively. The residual bitmap of the raw data and the best-fit results are shown in the inset.
Figure 5
Figure 5
Proteolytic and DUB activity assay of MERS-CoV PLpro and its mutants. Panel (A) shows the plot of initial velocities versus the concentration of peptidyl substrate, Dabcyl-FRLKGGAPIKGV-Edans. The concentration of the wild-type MERS-CoV PLpro (by circles), the L105W (by triangles) and P162L mutants (by squares) was 1, 0.1 and 10 μM, respectively. The line represented the best-fit results according to the Michaelis-Menten equation (Eq. 1). The kinetic parameters derived are shown in Table 2. (B) DUB activity analysis. The fluorogenic substrate Ub-AFC (1 μM) was used as the substrate. For comparison, both DUB activity of SARS-CoV and MERS-CoV PLpro was tested. The protein concentration was 0.17 μM. Besides, the inhibition of MERS-CoV PLpro by 10–50 mM EDTA or 50 μM Zn2+ were also clarified.
Figure 6
Figure 6
Putative active site of MERS-CoV PLpro. The model structure of MERS-CoV PLpro (in cyan) was generated by SWISS-MODEL [27] and then overlaid with the structure of SARS-CoV PLpro (in grey) in complex with Ub (in yellow) (PDB code: 4M0W). The residues are shown as sticks and hydrogen bonding and ion-pair interactions are indicated by red dashed lines. Four residues of SARS-CoV PLpro, Trp107, Leu163, Tyr265 and Tyr269, are labeled in black. The figure was produced using PyMol (http://www.pymol.org).

Similar articles

Cited by

References

    1. Anderson LJ, Baric RS. Emerging human coronaviruses–disease potential and preparedness. N Engl J Med. 2012;367(19):1850–1852. doi: 10.1056/NEJMe1212300. - DOI - PubMed
    1. Chan JF, Li KS, To KK, Cheng VC, Chen H, Yuen KY. Is the discovery of the novel human betacoronavirus 2c EMC/2012 (HCoV-EMC) the beginning of another SARS-like pandemic? J Infect. 2012;65(6):477–489. doi: 10.1016/j.jinf.2012.10.002. - DOI - PMC - PubMed
    1. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814–1820. doi: 10.1056/NEJMoa1211721. - DOI - PubMed
    1. Eckerle I, Muller MA, Kallies S, Gotthardt DN, Drosten C. In-vitro renal epithelial cell infection reveals a viral kidney tropism as a potential mechanism for acute renal failure during Middle East Respiratory Syndrome (MERS) Coronavirus infection. Virol J. 2013;10:359. doi: 10.1186/1743-422X-10-359. - DOI - PMC - PubMed
    1. Assiri A, McGeer A, Perl TM, Price CS, Al Rabeeah AA, Cummings DA, Alabdullatif ZN, Assad M, Almulhim A, Makhdoom H, Madani H, Alhakeem R, Al-Tawfiq JA, Cotten M, Watson SJ, Kellam P, Zumla AI, Memish ZA, Team KM-CI. Hospital outbreak of Middle East respiratory syndrome coronavirus. N Engl J Med. 2013;369(5):407–416. doi: 10.1056/NEJMoa1306742. - DOI - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources