Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Jan 27:5:5.
doi: 10.3389/fphar.2014.00005. eCollection 2014.

The role of CaMKII regulation of phospholamban activity in heart disease

Affiliations
Review

The role of CaMKII regulation of phospholamban activity in heart disease

Alicia Mattiazzi et al. Front Pharmacol. .

Abstract

Phospholamban (PLN) is a phosphoprotein in cardiac sarcoplasmic reticulum (SR) that is a reversible regulator of the Ca(2) (+)-ATPase (SERCA2a) activity and cardiac contractility. Dephosphorylated PLN inhibits SERCA2a and PLN phosphorylation, at either Ser(16) by PKA or Thr(17) by Ca(2) (+)-calmodulin-dependent protein kinase (CaMKII), reverses this inhibition. Through this mechanism, PLN is a key modulator of SR Ca(2) (+) uptake, Ca(2) (+) load, contractility, and relaxation. PLN phosphorylation is also the main determinant of β1-adrenergic responses in the heart. Although phosphorylation of Thr(17) by CaMKII contributes to this effect, its role is subordinate to the PKA-dependent increase in cytosolic Ca(2) (+), necessary to activate CaMKII. Furthermore, the effects of PLN and its phosphorylation on cardiac function are subject to additional regulation by its interacting partners, the anti-apoptotic HAX-1 protein and Gm or the anchoring unit of protein phosphatase 1. Regulation of PLN activity by this multimeric complex becomes even more important in pathological conditions, characterized by aberrant Ca(2) (+)-cycling. In this scenario, CaMKII-dependent PLN phosphorylation has been associated with protective effects in both acidosis and ischemia/reperfusion. However, the beneficial effects of increasing SR Ca(2) (+) uptake through PLN phosphorylation may be lost or even become deleterious, when these occur in association with alterations in SR Ca(2) (+) leak. Moreover, a major characteristic in human and experimental heart failure (HF) is depressed SR Ca(2) (+) uptake, associated with decreased SERCA2a levels and dephosphorylation of PLN, leading to decreased SR Ca(2) (+) load and impaired contractility. Thus, the strategy of altering SERCA2a and/or PLN levels or activity to restore perturbed SR Ca(2) (+) uptake is a potential therapeutic tool for HF treatment. We will review here the role of CaMKII-dependent phosphorylation of PLN at Thr(17) on cardiac function under physiological and pathological conditions.

Keywords: CaMKII; PLN regulation; acidosis; heart failure; ischemia/reperfusion injury; myocardium.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Phospholamban regulatome. Scheme of the multimeric protein complex constituted by SERCA2a, PLN, HAX-1, PKA, CAMKII, PP1, Inhibitor-1 (I-1), and Hsp20, which reversibly regulates SR Ca2+ transport in the cell. SERCA2a activity is regulated by its reversible inhibitor PLN and the histidine rich Ca2+-binding protein (HRC). Phosphorylation of PLN is mediated by cAMP-dependent protein kinase (PKA) at Ser16 site and Ca2+-calmodulin-dependent protein kinase (CaMKII) at Thr17 site. Dephosphorylation of these sites occurs by protein phosphatase 1 (PP1). The activity of PP1 is regulated by inhibitor-1 (I-1) and Hsp20.
FIGURE 2
FIGURE 2
PKA mediated increase in cytosolic Ca2+ and inhibition of PP1: two prerequisites for CaMKII-dependent phosphorylation of PLN during β1-adrenergic stimulation. PKA-dependent phosphorylation of Ca2+ handling proteins, particularly L-type Ca2+ channel and PLN, produces an increase in cytosolic Ca2+ that is necessary to activate CaMKII and produce CaMKII-dependent phosphorylation. PKA also increases inhibitor-1 and Hsp20 phosphorylation, amplifying the stimulatory effects of β1–adrenergic stimulation on SR Ca2+-transport, relaxation, and contractility.
FIGURE 3
FIGURE 3
(A) Intracellular mechanisms that may contribute to the mechanical recovery during acidosis. Acidosis produces a decrease in myofilament Ca2+ responsiveness which increases diastolic Ca2+ ([Ca2+]d). Activation of NHE and direct acidosis inhibition of Na+-Ca2+ exchanger (NCX), would contribute to the increase in cytosolic Ca2+. Acidosis also inhibits PP1. The simultaneous increase in cytosolic Ca2+ and inhibition of PP1 activates CaMKII and enhances PLN phosphorylation at Thr17 site. As a consequence, there is an increase in SR Ca2+ uptake, able to offset the direct acidosis-induced inhibition of SERCA2a activity. This would lead to enhanced SR Ca2+ release and Ca2+ transients, which counteract the negative effect of acidosis on contractile proteins and supply the substrate for the slow mechanical recovery during acidosis. (B). Putative intracellular mechanisms of post-acidosis induced-arrhythmias. Upon returning to control pH, the inhibitory effects of acidosis are rapidly removed, favoring the increase in Ca2+ cycling and the contractile recovery towards control levels. However, the relief of RyR2 from the previous constrain produced by acidosis, evokes also an increase in diastolic Ca2+ leak from the (Ca2+-loaded) SR. Such release may activate inward currents through the NCX, also relieved from the inhibition evoked by acidosis. The inward Na+ current, if large enough, can trigger arrhythmias.
FIGURE 4
FIGURE 4
The beneficial or detrimental effects of CaMKII activation and PLN phosphorylation in I/R depend on a tight balance between SR Ca2+ reuptake and leak. Reperfusion after a short ischemic period (stunning) is associated with an increase in CaMKII-dependent PLN and RyR2 phosphorylation. During early reperfusion (A), there is: abrupt release of SR Ca2+ (inset of the Figure, Valverde et al., 2010), possibly favored by the ischemia-induced increase in SR Ca2+ content; relief of RyR2 inhibition exerted by the ischemic acidosis; and increase in Ser2814 phosphorylation of RyR2 (Said et al., 2011). CaMKII-dependent phosphorylation of PLN does not counteract SR Ca2+ release, which is partially responsible for early reperfusion arrhythmias. (B) After the first minutes of reperfusion, the increase in Thr17 phosphorylation of PLN appears to successfully counteract SR Ca2+ leak, leading to Ca2+ transients and mechanical recovery.

Similar articles

Cited by

References

    1. Ai X., Curran J. W., Shannon T. R., Bers D. M., Pogwizd S. M. (2005). Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ. Res. 97 1314–132210.1161/01.RES.0000194329.41863.89 - DOI - PubMed
    1. Allen D. G., Orchard C. H. (1983). The effects of changes of pH on intracellular calcium transients in mammalian cardiac muscle. J. Physiol. (Lond.) 335 555–567 - PMC - PubMed
    1. Arber S., Hunter J. J., Ross J., Jr., Hongo M., Sansig G., Borg J., et al. (1997). MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88 393–40310.1016/S0092-8674(00)81878-4 - DOI - PubMed
    1. Bartel S., Willenbrock R., Haase H., Karczewski P., Wallukat G., Dietz R., et al. (1995). Cyclic GMP-mediated phospholamban phosphorylation in intact cardiomyocytes. Biochem. Biophys. Res. Commun. 214 75–8010.1006/bbrc.1995.2258 - DOI - PubMed
    1. Bassani R., Mattiazzi A., Bers D. M. (1995). CaMK-II is responsible for activity-dependent acceleration of relaxation in intact rat ventricular myocytes. Am. J. Physiol. 268 H703–H712 - PubMed

LinkOut - more resources