Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Oct 22;232(1266):59-70.
doi: 10.1098/rspb.1987.0061.

Injection of inositol 1,3,4,5-tetrakisphosphate into Xenopus oocytes generates a chloride current dependent upon intracellular calcium

Affiliations

Injection of inositol 1,3,4,5-tetrakisphosphate into Xenopus oocytes generates a chloride current dependent upon intracellular calcium

I Parker et al. Proc R Soc Lond B Biol Sci. .

Abstract

Injection of inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) into voltage-clamped oocytes of Xenopus laevis elicited an oscillatory chloride membrane current. This response did not depend upon extracellular calcium, because it could be produced in calcium-free solution and after addition of cobalt to block calcium channels in the surface membrane. However, it was abolished after intracellular loading with the calcium chelating agent EGTA, indicating a dependence upon intracellular calcium. The mean dose of Ins(1,3,4,5)P4 required to elicit a threshold current was 4 x 10(-14) mol. In comparison, inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) gave a similar oscillatory current with doses of about one twentieth as big. Hyperpolarization of the oocyte membrane during activation by Ins(1,3,4,5)P4 elicited a transient inward current, as a result of the opening of calcium-dependent chloride channels subsequent to the entry of external calcium. In some oocytes the injection of Ins(1,3,4,5)P4 was itself sufficient to allow the generation of the transient inward current, whereas in others a prior injection of Ins(1,4,5)P3 was required. We conclude that Ins(1,3,4,5)P4 causes the release of intracellular calcium from stores in the oocyte, albeit with less potency than Ins(1,4,5)P3. In addition, Ins(1,3,4,5)P4 activates voltage-sensitive calcium channels in the surface membrane, via a process that may require 'priming' by Ins(1,4,5)P3.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources