Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015;33(1):93-103.
doi: 10.1080/07391102.2013.851034. Epub 2013 Nov 21.

How the disulfide conformation determines the disulfide/thiol redox potential

Affiliations

How the disulfide conformation determines the disulfide/thiol redox potential

Goedele Roos et al. J Biomol Struct Dyn. 2015.

Abstract

Protein disulfides can adopt a wide variety of conformations, each having different energies. Limited experimental data suggest that disulfides adopting a high energy have an enhanced likelihood for reduction, but the exact nature of this relation is not clear. Using a computational approach, we give insight on the conformational dependence of the redox behavior of the disulfide bond, which relates structure to reactivity. The relative energy of different conformations of the diethyl disulfide model system correlates with the disulfide/thiol redox potential E°. Insight in the calculated redox potentials is obtained via quantitative molecular orbital theory, and via the decomposition of E° into a vertical electron affinity and a subsequent reorganization term. We have identified the determinants of the disulfide conformational energies and characterized the barrier to rotation around the disulfide bond. Our findings on the diethyl disulfide model system can be transferred to examples from the Protein Data Base. In conclusion, strained disulfide conformations with a high conformational energy have a large tendency to be reduced. Upon reduction, unfavorable interactions are released. This explains why reorganization effects and not a higher tendency to accept electrons account for the high reduction potential of high-energy disulfides.

Keywords: conformation; disulfide; disulfide/thiol redox potential; quantitative MO theory; structure–reactivity relations.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources