Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Dec;540(1-2):117-24.
doi: 10.1016/j.abb.2013.10.017. Epub 2013 Oct 31.

Penicillium purpurogenum produces two GH family 43 enzymes with β-xylosidase activity, one monofunctional and the other bifunctional: Biochemical and structural analyses explain the difference

Affiliations

Penicillium purpurogenum produces two GH family 43 enzymes with β-xylosidase activity, one monofunctional and the other bifunctional: Biochemical and structural analyses explain the difference

María Cristina Ravanal et al. Arch Biochem Biophys. 2013 Dec.

Abstract

β-Xylosidases participate in xylan biodegradation, liberating xylose from the non-reducing end of xylooligosaccharides. The fungus Penicillium purpurogenum secretes two enzymes with β-D-xylosidase activity belonging to family 43 of the glycosyl hydrolases. One of these enzymes, arabinofuranosidase 3 (ABF3), is a bifunctional α-L-arabinofuranosidase/xylobiohydrolase active on p-nitrophenyl-α-L-arabinofuranoside (pNPAra) and p-nitrophenyl-β-D-xylopyranoside (pNPXyl) with a KM of 0.65 and 12 mM, respectively. The other, β-D-xylosidase 1 (XYL1), is only active on pNPXyl with a KM of 0.55 mM. The xyl1 gene was expressed in Pichia pastoris, purified and characterized. The properties of both enzymes were compared in order to explain their difference in substrate specificity. Structural models for each protein were built using homology modeling tools. Molecular docking simulations were used to analyze the interactions defining the affinity of the proteins to both ligands. The structural analysis shows that active complexes (ABF3-pNPXyl, ABF3-pNPAra and XYL1-pNPXyl) possess specific interactions between substrates and catalytic residues, which are absent in the inactive complex (XYL1-pNPAra), while other interactions with non-catalytic residues are found in all complexes. pNPAra is a competitive inhibitor for XYL1 (Ki = 2.5 mM), confirming that pNPAra does bind to the active site but not to the catalytic residues.

Keywords: Glycosyl hydrolase family 43; Heterologous expression; Homology modeling; Molecular docking simulations; Penicillium purpurogenum; β-d-Xylosidase.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources