Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Dec;43(3 Pt 2):623-32.
doi: 10.1016/0092-8674(85)90234-x.

Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro

Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro

R D Vale et al. Cell. 1985 Dec.

Abstract

Single microtubules from squid axoplasm support bidirectional movement of organelles. We previously purified a microtubule translocator (kinesin) that moves latex beads in only one direction along microtubules. In this study, a polar array of microtubules assembled off of centrosomes in vitro was used to demonstrate that kinesin moves latex beads from the minus to the plus ends of microtubules, a direction that corresponds to anterograde transport in the axon. A crude solubilized fraction from squid axoplasm (S1a), however, generates bidirectional movement of beads along microtubules. Retrograde bead movement (1.4 micron/sec) is inhibited by N-ethylmaleimide and 20 microM vanadate while anterograde movement (0.6 micron/sec) is unaffected by these agents. Furthermore, a monoclonal antibody against kinesin, when coupled to Sepharose, removes the anterograde, but not the retrograde, bead translocator from S1a. These results indicate that there is a retrograde bead translocator which is pharmacologically and immunologically distinct from kinesin.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources