Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Sep;16(87):123-31.

Interferon-γ and systemic autoimmunity

Affiliations
Review

Interferon-γ and systemic autoimmunity

Kenneth M Pollard et al. Discov Med. 2013 Sep.

Abstract

The term interferon describes a family of proteins consisting of three major types (I, II, and III) which differ in their primary protein sequences, cognate receptors, genetic loci, and cell types responsible for their production. The interferons, including types I and II, overlap significantly in the genes they control resulting in a shared spectrum of diverse biological effects which includes regulation of both the innate and adaptive immune responses. As such, the interferons are major effectors in the pathogenesis of autoimmunity, especially systemic autoimmunity. The type I IFNs, because they are produced during the early stages of the innate immune response, are thought to play the foremost role in autoimmune responses. However, numerous studies have found that the single type II IFN, IFN-γ, plays an essential role in the development and severity of systemic autoimmunity, particularly systemic lupus erythematosus. This is supported by animal studies where IFN-γ is uniformly required in both spontaneous and induced models of lupus. Although expression of IFN-γ in cells of the innate immune system is almost immediate after activation, expression in adaptive immunity requires a complex orchestration of cellular interactions, signaling events, and epigenetic modifications. The multifaceted nature of IFN-γ in adaptive immunity identifies numerous possible therapeutic targets that, because of the essential contribution of IFN-γ to systemic autoimmunity, have the potential for producing benefits.

PubMed Disclaimer

Conflict of interest statement

Disclosure

The authors report no conflict of interest.

Similar articles

Cited by

References

    1. Akahoshi M, Nakashima H, Tanaka Y, Kohsaka T, Nagano S, Ohgami E, Arinobu Y, Yamaoka K, Niiro H, Shinozaki M, Hirakata H, Horiuchi T, Otsuka T, Niho Y. Th1/Th2 balance of peripheral T helper cells in systemic lupus erythematosus. Arthritis Rheum. 1999;42(8):1644–1648. - PubMed
    1. Aune TM, Collins PL, Collier SP, Henderson MA, Chang S. Epigenetic Activation and Silencing of the Gene that Encodes IFN-gamma. Frontiers in immunology. 2013;4:112. - PMC - PubMed
    1. Baccala R, Gonzalez-Quintial R, Schreiber RD, Lawson BR, Kono DH, Theofilopoulos AN. Anti-IFN-alpha/beta Receptor Antibody Treatment Ameliorates Disease in Lupus-Predisposed Mice. J Immunol. 2012;189(12):5976–5984. - PMC - PubMed
    1. Baccala R, Hoebe K, Kono DH, Beutler B, Theofilopoulos AN. TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nat Med. 2007;13(5):543–551. - PubMed
    1. Baccala R, Kono DH, Theofilopoulos AN. Interferons as pathogenic effectors in autoimmunity. Immunol Rev. 2005;204:9–26. - PubMed

Publication types