Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Sep;12(3):165-72.
doi: 10.1109/TNB.2013.2264097. Epub 2013 Aug 21.

Identifying protein complexes based on multiple topological structures in PPI networks

Affiliations

Identifying protein complexes based on multiple topological structures in PPI networks

Bolin Chen et al. IEEE Trans Nanobioscience. 2013 Sep.

Abstract

Various computational algorithms are developed to identify protein complexes based on only one of specific topological structures in protein-protein interaction (PPI) networks, such as cliques, dense subgraphs, core-attachment structures and starlike structures. However, protein complexes exhibit intricate connections in a PPI network. They cannot be fully detected by only single topological structure. In this paper, we propose an algorithm based on multiple topological structures to identify protein complexes from PPI networks. In the proposed algorithm, four single topological structure based algorithms are first employed to identify raw predictions with specific topological structures, respectively. Those raw predictions are trimmed according to their topological information or GO annotations. Similar results are carefully merged before generating final predictions. Numerical experiments are conducted on a yeast PPI network of DIP and a human PPI network of HPRD. The predicted results show that the multiple topological structure based algorithm can not only obtain a more number of predictions, but also generate results with high accuracy in terms of f-score, matching with known protein complexes and functional enrichments with GO.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources