Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Aug 19;10(1):35.
doi: 10.1186/1742-4933-10-35.

Killer Immunoglobulin-like Receptors (KIR) haplogroups A and B track with Natural Killer Cells and Cytokine Profile in Aged Subjects: Observations from Octo/Nonagenarians in the Belfast Elderly Longitudinal Free-living Aging STudy (BELFAST)

Affiliations

Killer Immunoglobulin-like Receptors (KIR) haplogroups A and B track with Natural Killer Cells and Cytokine Profile in Aged Subjects: Observations from Octo/Nonagenarians in the Belfast Elderly Longitudinal Free-living Aging STudy (BELFAST)

Irene Maeve Rea et al. Immun Ageing. .

Abstract

Background: Natural Killer Cells (NK) play an important role in detection and elimination of virus-infected, damaged or cancer cells. NK cell function is guided by expression of Killer Immunoglobulin-like Receptors (KIRs) and contributed to by the cytokine milieu. KIR molecules are grouped on NK cells into stimulatory and inhibitory KIR haplotypes A and B, through which NKs sense and tolerate HLA self-antigens or up-regulate the NK-cytotoxic response to cells with altered HLA self-antigens, damaged by viruses or tumours. We have previously described increased numbers of NK and NK-related subsets in association with sIL-2R cytokine serum levels in BELFAST octo/nonagenarians. We hypothesised that changes in KIR A and B haplotype gene frequencies could explain the increased cytokine profiles and NK compartments previously described in Belfast Elderly Longitudinal Free-living Aging STudy (BELFAST) octo/nonagenarians, who show evidence of ageing well.

Results: In the BELFAST study, 24% of octo/nonagenarians carried the KIR A haplotype and 76% KIR B haplotype with no differences for KIR A haplogroup frequency between male or female subjects (23% v 24%; p=0.88) or for KIR B haplogroup (77% v 76%; p=0.99). Octo/nonagenarian KIR A haplotype carriers showed increased NK numbers and percentage compared to Group B KIR subjects (p=0.003; p=0.016 respectively). There were no KIR A/ B haplogroup-associated changes for related CD57+CD8 (high or low) subsets. Using logistic regression, KIR B carriers were predicted to have higher IL-12 cytokine levels compared to KIR A carriers by about 3% (OR 1.03, confidence limits CI 0.99-1.09; p=0.027) and 14% higher levels for TGF-β (active), a cytokine with an anti-inflammatory role, (OR 1.14, confidence limits CI 0.99-1.09; p=0.002).

Conclusion: In this observational study, BELFAST octo/nonagenarians carrying KIR A haplotype showed higher NK cell numbers and percentage compared to KIR B carriers. Conversely, KIR B haplotype carriers, with genes encoding for activating KIRs, showed a tendency for higher serum pro-inflammatory cytokines compared to KIR A carriers. While the findings in this study should be considered exploratory they may serve to stimulate debate about the immune signatures of those who appear to age slowly and who represent a model for good quality survivor-hood.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Regression Scatterplots and Regression lines for Serum Cytokines sIL-2R U/ml and TGF-β pg/ml with Natural Killer cells x10 6 (NK) for Octo/Nonagenarians from the Belfast Elderly Longitudinal Free-Living Ageing STudy (BELFAST) with associated p values.
Figure 2
Figure 2
Percentile plots for Cytokines sIL-2R U/ml, TNF-α pg/ml, IL-12p40 pg/ml and log active TGF-β pg/ml for Octo/Nonagenarians from the Belfast Elderly Longitudinal Free-Living Ageing STudy (BELFAST) grouped by Killer Immunoglobulin Receptor Haplogroups A and B (KIR A and KIR B).

Similar articles

Cited by

References

    1. Evert J, Lawler E, Bogan H, Perls T. Morbidity profiles of centenarians: survivors, delayers, and escapers. J Gerontol A Biol Sci Med Sci. 2003;58:232–237. doi: 10.1093/gerona/58.3.M232. - DOI - PubMed
    1. Farag SS, Fehniger TA, Ruggeri L, Velardi A, Caligiuri MA. Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood. 2002;100:1935–1947. doi: 10.1182/blood-2002-02-0350. - DOI - PubMed
    1. Be’ziat V, Duffy D, Nguyen Quoc S, Le Garff-Tavernier M, Decocq J, Combadie’re B, Debre P, Vieillard V. CD56brightCD16+ NK cells: a functional intermediate stage of NK cell differentiation. J Immunol. 2011;186:6753–61. doi: 10.4049/jimmunol.1100330. Epub 2011 May 9. - DOI - PubMed
    1. Jacobs R, Hintzen G, Kemper A, Beul K, Kempf S, Behrens G, Sykora KW, Schmidt RE. CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells. Eur J Immunol. 2001;31:3121–3127. doi: 10.1002/1521-4141(2001010)31:10<3121::AID-IMMU3121>3.0.CO;2-4. - DOI - PubMed
    1. Tamura H, Ogata K. In: Handbook on immunosenesence: basic understanding and clinical applications. Fulop T, Franceschi C, Hirokawa K, Pawelec G, editor. Netherlands: Springer; 2009. Natural killer cells and human longevity, chapter 27; pp. 545–561. http://dx.doi.org/10.1007/978-1-4020-9063-9. ISBN 978-1-4020-9062-2. e-ISBN: 978-1-4020-9063-9. - DOI

LinkOut - more resources