Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2013 Sep;37(6):551-559.
doi: 10.1002/gepi.21741. Epub 2013 Jul 26.

Empirical hierarchical bayes approach to gene-environment interactions: development and application to genome-wide association studies of lung cancer in TRICL

Affiliations
Comparative Study

Empirical hierarchical bayes approach to gene-environment interactions: development and application to genome-wide association studies of lung cancer in TRICL

Melanie Sohns et al. Genet Epidemiol. 2013 Sep.

Abstract

The analysis of gene-environment (G × E) interactions remains one of the greatest challenges in the postgenome-wide association studies (GWASs) era. Recent methods constitute a compromise between the robust but underpowered case-control and powerful case-only methods. Inferences of the latter are biased when the assumption of gene-environment (G-E) independence in controls fails. We propose a novel empirical hierarchical Bayes approach to G × E interaction (EHB-GE), which benefits from greater rank power while accounting for population-based G-E correlation. Building on Lewinger et al.'s ([2007] Genet Epidemiol 31:871-882) hierarchical Bayes prioritization approach, the method first obtains posterior G-E correlation estimates in controls for each marker, borrowing strength from G-E information across the genome. These posterior estimates are then subtracted from the corresponding case-only G × E estimates. We compared EHB-GE with rival methods using simulation. EHB-GE has similar or greater rank power to detect G × E interactions in the presence of large numbers of G-E correlations with weak to strong effects or only a low number of such correlations with large effect. When there are no or only a few weak G-E correlations, Murcray et al.'s method ([2009] Am J Epidemiol 169:219-226) identifies markers with low G × E interaction effects better. We applied EHB-GE and competing methods to four lung cancer case-control GWAS from the Interdisciplinary Research in Cancer of the Lung/International Lung Cancer Consortium with smoking as environmental factor. A number of genes worth investigating were identified by the EHB-GE approach.

Keywords: GEWIS; GWAS; lung cancer; population G-E correlation; rank power.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Rank power to detect a GxE interaction in the top 25 ranking SNPs by EHB-GE with various ratios of cases and controls (ccr = 1:1, 1:2 and 2:1 => 1,500:1,500, 1,000:2,000 and 2,000:1,000 cases and controls) and varying number of G-E associations NG-E with different effect sizes ORG-E(low), ORG-E(medium) and ORG-E(high)., ORGxE = 2, pg = 30%, pe = 10%, pd = 5%.
Figure 2
Figure 2
Rank power comparison to detect a GxE interaction in the top 25 ranking SNPs between EHB-GE and competing method. On the x-axis EHB-GE rank power, on the y-axis difference between the rank power of EHB-GE and competing method: a) Case-Control (CC), b) Case-Only (CO), c) Intuitive two-step approach (TWO), d) Mukherjee's empirical Bayes-type shrinkage estimator (MUK-EB), e) Murcray's two step approach (MUR)

Similar articles

Cited by

  • RDoC and translational perspectives on the genetics of trauma-related psychiatric disorders.
    Montalvo-Ortiz JL, Gelernter J, Hudziak J, Kaufman J. Montalvo-Ortiz JL, et al. Am J Med Genet B Neuropsychiatr Genet. 2016 Jan;171B(1):81-91. doi: 10.1002/ajmg.b.32395. Epub 2015 Nov 22. Am J Med Genet B Neuropsychiatr Genet. 2016. PMID: 26592203 Free PMC article. Review.
  • Modification of the association between PM10 and lung function decline by cadherin 13 polymorphisms in the SAPALDIA cohort: a genome-wide interaction analysis.
    Imboden M, Kumar A, Curjuric I, Adam M, Thun GA, Haun M, Tsai MY, Pons M, Bettschart R, Turk A, Rochat T, Künzli N, Schindler C, Kronenberg F, Probst-Hensch NM. Imboden M, et al. Environ Health Perspect. 2015 Jan;123(1):72-9. doi: 10.1289/ehp.1307398. Epub 2014 Aug 15. Environ Health Perspect. 2015. PMID: 25127211 Free PMC article.
  • Assessing gene-environment interactions for common and rare variants with binary traits using gene-trait similarity regression.
    Zhao G, Marceau R, Zhang D, Tzeng JY. Zhao G, et al. Genetics. 2015 Mar;199(3):695-710. doi: 10.1534/genetics.114.171686. Epub 2015 Jan 12. Genetics. 2015. PMID: 25585620 Free PMC article.
  • Gene-age interactions in blood pressure regulation: a large-scale investigation with the CHARGE, Global BPgen, and ICBP Consortia.
    Simino J, Shi G, Bis JC, Chasman DI, Ehret GB, Gu X, Guo X, Hwang SJ, Sijbrands E, Smith AV, Verwoert GC, Bragg-Gresham JL, Cadby G, Chen P, Cheng CY, Corre T, de Boer RA, Goel A, Johnson T, Khor CC; LifeLines Cohort Study; Lluís-Ganella C, Luan J, Lyytikäinen LP, Nolte IM, Sim X, Sõber S, van der Most PJ, Verweij N, Zhao JH, Amin N, Boerwinkle E, Bouchard C, Dehghan A, Eiriksdottir G, Elosua R, Franco OH, Gieger C, Harris TB, Hercberg S, Hofman A, James AL, Johnson AD, Kähönen M, Khaw KT, Kutalik Z, Larson MG, Launer LJ, Li G, Liu J, Liu K, Morrison AC, Navis G, Ong RT, Papanicolau GJ, Penninx BW, Psaty BM, Raffel LJ, Raitakari OT, Rice K, Rivadeneira F, Rose LM, Sanna S, Scott RA, Siscovick DS, Stolk RP, Uitterlinden AG, Vaidya D, van der Klauw MM, Vasan RS, Vithana EN, Völker U, Völzke H, Watkins H, Young TL, Aung T, Bochud M, Farrall M, Hartman CA, Laan M, Lakatta EG, Lehtimäki T, Loos RJ, Lucas G, Meneton P, Palmer LJ, Rettig R, Snieder H, Tai ES, Teo YY, van der Harst P, Wareham NJ, Wijmenga C, Wong TY, Fornage M, Gudnason V, Levy D, Palmas W, Ridker PM, Rotter JI, van Duijn CM, Witteman JC, Chakravarti A, Rao DC. Simino J, et al. Am J Hum Genet. 2014 Jul 3;95(1):24-38. doi: 10.1016/j.ajhg.2014.05.010. Epub 2014 Jun 19. Am J Hum Genet. 2014. PMID: 24954895 Free PMC article.

References

    1. Albert PS, Ratnasinghe D, Tangrea J, Wacholder S. Limitations of the case-only design for identifying gene-environment interactions. Am J Epidemiol. 2001;154:687–693. - PubMed
    1. Amos CI, Wu X, Broderick P, Gorlov IP, Gu J, Eisen T, Dong Q, Zhang Q, Gu X, Vijayakrishnan J, Sullivan K, Matakidou A, Wang Y, Mills G, Doheny K, Tsai YY, Chen WV, Shete S, Spitz MR, Houlston RS. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet. 2008;40:616–622. - PMC - PubMed
    1. Chatterjee N, Carroll RJ. Semiparametric maximum likelihood estimation exploiting gene-environment independence in case-control studies. Biometrika. 2005;92:399–418.
    1. Hirschhorn JN. Genetic approaches to studying common diseases and complex traits. Pediatr Res. 2005;57:74–77. - PubMed
    1. Holle R, Happich M, Löwel H, Wichmann HE. KORA – a research platform for population based health research. Gesundheitswesen Bundesverband Der Arzte Des Offentlichen Gesundheitsdienstes Germany. 2005;67:19–25. - PubMed

Publication types

LinkOut - more resources