Empirical hierarchical bayes approach to gene-environment interactions: development and application to genome-wide association studies of lung cancer in TRICL
- PMID: 23893921
- PMCID: PMC4082246
- DOI: 10.1002/gepi.21741
Empirical hierarchical bayes approach to gene-environment interactions: development and application to genome-wide association studies of lung cancer in TRICL
Abstract
The analysis of gene-environment (G × E) interactions remains one of the greatest challenges in the postgenome-wide association studies (GWASs) era. Recent methods constitute a compromise between the robust but underpowered case-control and powerful case-only methods. Inferences of the latter are biased when the assumption of gene-environment (G-E) independence in controls fails. We propose a novel empirical hierarchical Bayes approach to G × E interaction (EHB-GE), which benefits from greater rank power while accounting for population-based G-E correlation. Building on Lewinger et al.'s ([2007] Genet Epidemiol 31:871-882) hierarchical Bayes prioritization approach, the method first obtains posterior G-E correlation estimates in controls for each marker, borrowing strength from G-E information across the genome. These posterior estimates are then subtracted from the corresponding case-only G × E estimates. We compared EHB-GE with rival methods using simulation. EHB-GE has similar or greater rank power to detect G × E interactions in the presence of large numbers of G-E correlations with weak to strong effects or only a low number of such correlations with large effect. When there are no or only a few weak G-E correlations, Murcray et al.'s method ([2009] Am J Epidemiol 169:219-226) identifies markers with low G × E interaction effects better. We applied EHB-GE and competing methods to four lung cancer case-control GWAS from the Interdisciplinary Research in Cancer of the Lung/International Lung Cancer Consortium with smoking as environmental factor. A number of genes worth investigating were identified by the EHB-GE approach.
Keywords: GEWIS; GWAS; lung cancer; population G-E correlation; rank power.
© 2013 WILEY PERIODICALS, INC.
Figures
Similar articles
-
Deciphering Genome Environment Wide Interactions Using Exposed Subjects Only.Genet Epidemiol. 2015 Jul;39(5):334-46. doi: 10.1002/gepi.21890. Epub 2015 Feb 18. Genet Epidemiol. 2015. PMID: 25694100 Free PMC article.
-
Using Bayes model averaging to leverage both gene main effects and G × E interactions to identify genomic regions in genome-wide association studies.Genet Epidemiol. 2019 Mar;43(2):150-165. doi: 10.1002/gepi.22171. Epub 2018 Nov 19. Genet Epidemiol. 2019. PMID: 30456811 Free PMC article.
-
The case-only test for gene-environment interaction is not uniformly powerful: an empirical example.Genet Epidemiol. 2013 May;37(4):402-7. doi: 10.1002/gepi.21713. Epub 2013 Mar 13. Genet Epidemiol. 2013. PMID: 23595356 Free PMC article.
-
Review of the Gene-Environment Interaction Literature in Cancer: What Do We Know?Genet Epidemiol. 2016 Jul;40(5):356-65. doi: 10.1002/gepi.21967. Epub 2016 Apr 7. Genet Epidemiol. 2016. PMID: 27061572 Free PMC article. Review.
-
Gene-Environment Interaction: A Variable Selection Perspective.Methods Mol Biol. 2021;2212:191-223. doi: 10.1007/978-1-0716-0947-7_13. Methods Mol Biol. 2021. PMID: 33733358 Review.
Cited by
-
RDoC and translational perspectives on the genetics of trauma-related psychiatric disorders.Am J Med Genet B Neuropsychiatr Genet. 2016 Jan;171B(1):81-91. doi: 10.1002/ajmg.b.32395. Epub 2015 Nov 22. Am J Med Genet B Neuropsychiatr Genet. 2016. PMID: 26592203 Free PMC article. Review.
-
Modification of the association between PM10 and lung function decline by cadherin 13 polymorphisms in the SAPALDIA cohort: a genome-wide interaction analysis.Environ Health Perspect. 2015 Jan;123(1):72-9. doi: 10.1289/ehp.1307398. Epub 2014 Aug 15. Environ Health Perspect. 2015. PMID: 25127211 Free PMC article.
-
Assessing gene-environment interactions for common and rare variants with binary traits using gene-trait similarity regression.Genetics. 2015 Mar;199(3):695-710. doi: 10.1534/genetics.114.171686. Epub 2015 Jan 12. Genetics. 2015. PMID: 25585620 Free PMC article.
-
Gene-age interactions in blood pressure regulation: a large-scale investigation with the CHARGE, Global BPgen, and ICBP Consortia.Am J Hum Genet. 2014 Jul 3;95(1):24-38. doi: 10.1016/j.ajhg.2014.05.010. Epub 2014 Jun 19. Am J Hum Genet. 2014. PMID: 24954895 Free PMC article.
References
-
- Albert PS, Ratnasinghe D, Tangrea J, Wacholder S. Limitations of the case-only design for identifying gene-environment interactions. Am J Epidemiol. 2001;154:687–693. - PubMed
-
- Amos CI, Wu X, Broderick P, Gorlov IP, Gu J, Eisen T, Dong Q, Zhang Q, Gu X, Vijayakrishnan J, Sullivan K, Matakidou A, Wang Y, Mills G, Doheny K, Tsai YY, Chen WV, Shete S, Spitz MR, Houlston RS. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet. 2008;40:616–622. - PMC - PubMed
-
- Chatterjee N, Carroll RJ. Semiparametric maximum likelihood estimation exploiting gene-environment independence in case-control studies. Biometrika. 2005;92:399–418.
-
- Hirschhorn JN. Genetic approaches to studying common diseases and complex traits. Pediatr Res. 2005;57:74–77. - PubMed
-
- Holle R, Happich M, Löwel H, Wichmann HE. KORA – a research platform for population based health research. Gesundheitswesen Bundesverband Der Arzte Des Offentlichen Gesundheitsdienstes Germany. 2005;67:19–25. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical