Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013;133(10):1113-20.
doi: 10.1248/yakushi.13-00179. Epub 2013 Jul 6.

[Significance of quantum chemical interactions for medicinal science and design of β-secretase inhibitors]

[Article in Japanese]
Affiliations
Free article
Review

[Significance of quantum chemical interactions for medicinal science and design of β-secretase inhibitors]

[Article in Japanese]
Yoshio Hamada. Yakugaku Zasshi. 2013.
Free article

Abstract

This review discusses the importance of quantum chemical interactions in biomolecules for medicinal science and their relevance to the author's β-secretase (BACE1) inhibitor drug discovery research. Although molecular mechanics/dynamics (MM/MD) methods are available in many in silico design tools used for drug discovery, they cannot accurately evaluate quantum effects between biomolecules and drugs. The key roles of biomolecular quantum chemical interactions in drug discovery are discussed using the arginine side chain as an example. Arginine is recognized as a charged amino acid in commonly used drug design software, unlike other amino acids with π-electron orbitals, such as phenylalanine, tyrosine, and tryptophan. Quantum chemical interactions via the arginine side chain are crucial for molecular recognition, and are found in many X-ray crystal structures, such as protein-protein, protein homodimer, RNA aptamer-protein, and enzyme-inhibitor complexes. This review describes the essential role of quantum chemical interactions via the arginine side chain in the mechanism of BACE1 inhibition, and proposes an "electron donor/acceptor bioisostere" concept for medicinal science based on quantum chemical interactions. Several potent BACE1 inhibitors, as well as the first peptides with BACE1 inhibiting activity were designed and synthesized based on studies of quantum chemical interactions via arginine side chain and the "electron donor bioisostere" concept.

PubMed Disclaimer

Similar articles