Effects of phosphorylation on the structure and backbone dynamics of the intrinsically disordered connexin43 C-terminal domain
- PMID: 23828237
- PMCID: PMC3750180
- DOI: 10.1074/jbc.M113.454389
Effects of phosphorylation on the structure and backbone dynamics of the intrinsically disordered connexin43 C-terminal domain
Abstract
Phosphorylation of the connexin43 C-terminal (Cx43CT) domain regulates gap junction intercellular communication. However, an understanding of the mechanisms by which phosphorylation exerts its effects is lacking. Here, we test the hypothesis that phosphorylation regulates Cx43 gap junction intercellular communication by mediating structural changes in the C-terminal domain. Circular dichroism and nuclear magnetic resonance were used to characterize the effects of phosphorylation on the secondary structure and backbone dynamics of soluble and membrane-tethered Cx43CT domains. Cx43CT phospho-mimetic isoforms, which have Asp substitutions at specific Ser/Tyr sites, revealed phosphorylation alters the α-helical content of the Cx43CT domain only when attached to the membrane. The changes in secondary structure are due to variations in the conformational preference and backbone flexibility of residues adjacent and distal to the site(s) of modification. In addition to the known direct effects of phosphorylation on molecular partner interactions, the data presented here suggest phosphorylation may also indirectly regulate binding affinity by altering the conformational preference of the Cx43CT domain.
Keywords: Circular Dichroism (CD); Gap Junctions; Nuclear Magnetic Resonance; Phosphorylation; Protein Dynamics.
Figures
Similar articles
-
Structural changes in the carboxyl terminus of the gap junction protein connexin43 indicates signaling between binding domains for c-Src and zonula occludens-1.J Biol Chem. 2004 Dec 24;279(52):54695-701. doi: 10.1074/jbc.M409552200. Epub 2004 Oct 18. J Biol Chem. 2004. PMID: 15492000
-
Structural Studies of the Nedd4 WW Domains and Their Selectivity for the Connexin43 (Cx43) Carboxyl Terminus.J Biol Chem. 2016 Apr 1;291(14):7637-50. doi: 10.1074/jbc.M115.701417. Epub 2016 Feb 3. J Biol Chem. 2016. PMID: 26841867 Free PMC article.
-
Characterization of the pH-dependent interaction between the gap junction protein connexin43 carboxyl terminus and cytoplasmic loop domains.J Biol Chem. 2007 Feb 23;282(8):5801-13. doi: 10.1074/jbc.M605233200. Epub 2006 Dec 17. J Biol Chem. 2007. PMID: 17178730
-
Connexin43 phosphorylation: structural changes and biological effects.Biochem J. 2009 Apr 15;419(2):261-72. doi: 10.1042/BJ20082319. Biochem J. 2009. PMID: 19309313 Free PMC article. Review.
-
Structural bases for the chemical regulation of Connexin43 channels.Cardiovasc Res. 2004 May 1;62(2):268-75. doi: 10.1016/j.cardiores.2003.12.030. Cardiovasc Res. 2004. PMID: 15094347 Review.
Cited by
-
Regulation of Cx43 Gap Junction Intercellular Communication by Bruton's Tyrosine Kinase and Interleukin-2-Inducible T-Cell Kinase.Biomolecules. 2023 Apr 8;13(4):660. doi: 10.3390/biom13040660. Biomolecules. 2023. PMID: 37189407 Free PMC article.
-
The Structural and Functional Diversity of Intrinsically Disordered Regions in Transmembrane Proteins.J Membr Biol. 2019 Oct;252(4-5):273-292. doi: 10.1007/s00232-019-00069-2. Epub 2019 May 28. J Membr Biol. 2019. PMID: 31139867 Review.
-
Determinants of Cx43 Channel Gating and Permeation: The Amino Terminus.Biophys J. 2016 Jan 5;110(1):127-40. doi: 10.1016/j.bpj.2015.10.054. Biophys J. 2016. PMID: 26745416 Free PMC article.
-
How phosphorylation impacts intrinsically disordered proteins and their function.Essays Biochem. 2022 Dec 16;66(7):901-913. doi: 10.1042/EBC20220060. Essays Biochem. 2022. PMID: 36350035 Free PMC article.
-
TGF-β1 promotes gap junctions formation in chondrocytes via Smad3/Smad4 signalling.Cell Prolif. 2019 Mar;52(2):e12544. doi: 10.1111/cpr.12544. Epub 2018 Nov 15. Cell Prolif. 2019. PMID: 30444057 Free PMC article.
References
-
- Kumar N. M., Gilula N. B. (1996) The gap junction communication channel. Cell 84, 381–388 - PubMed
-
- Laird D. W. (2008) Closing the gap on autosomal dominant connexin-26 and connexin-43 mutants linked to human disease. J. Biol. Chem. 283, 2997–3001 - PubMed
-
- Dobrowolski R., Willecke K. (2009) Connexin-caused genetic diseases and corresponding mouse models. Antioxid. Redox Signal. 11, 283–295 - PubMed
-
- Unger V. M., Kumar N. M., Gilula N. B., Yeager M. (1999) Three-dimensional structure of a recombinant gap junction membrane channel. Science 283, 1176–1180 - PubMed
-
- Maeda S., Nakagawa S., Suga M., Yamashita E., Oshima A., Fujiyoshi Y., Tsukihara T. (2009) Structure of the connexin 26 gap junction channel at 3.5 Å resolution. Nature 458, 597–602 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous