Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Oct;1(4):1929-41.
doi: 10.1002/cphy.c100028.

Inflammatory mechanisms in the pathogenesis of pulmonary arterial hypertension

Affiliations
Review

Inflammatory mechanisms in the pathogenesis of pulmonary arterial hypertension

Hala El Chami et al. Compr Physiol. 2011 Oct.

Abstract

Inflammation is a prominent feature of human and experimental pulmonary hypertension (PH) as suggested by infiltration of various inflammatory cells and increased expression of certain cytokines in remodeled pulmonary vessels. Macrophages, T and B lymphocytes, and dendritic cells are found in the vascular lesions of idiopathic pulmonary arterial hypertension (PAH) as well as in PAH associated with connective tissue diseases or infectious etiologies such as HIV. In addition, PAH is often characterized by the presence of circulating chemokines and cytokines, increased expression of growth (such as VEGF and PDGF) and transcriptional (e.g., nuclear factor of activated T cells or NFAT) factors, and viral protein components (e.g., HIV-1 Nef), which directly contribute to further recruitment of inflammatory cells and the pulmonary vascular remodeling process. These inflammatory pathways may thus serve as potential specific therapeutic targets. This article provides an overview of inflammatory pathways involving chemokines and cytokines as well as growth factors, highlighting their potential role in pulmonary vascular remodeling and the possibility of future targeted therapy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources