Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2013 Jan 22:13:25.
doi: 10.1186/1471-2334-13-25.

An approximation of herd effect due to vaccinating children against seasonal influenza - a potential solution to the incorporation of indirect effects into static models

Affiliations
Meta-Analysis

An approximation of herd effect due to vaccinating children against seasonal influenza - a potential solution to the incorporation of indirect effects into static models

Ilse Van Vlaenderen et al. BMC Infect Dis. .

Abstract

Background: Indirect herd effect from vaccination of children offers potential for improving the effectiveness of influenza prevention in the remaining unvaccinated population. Static models used in cost-effectiveness analyses cannot dynamically capture herd effects. The objective of this study was to develop a methodology to allow herd effect associated with vaccinating children against seasonal influenza to be incorporated into static models evaluating the cost-effectiveness of influenza vaccination.

Methods: Two previously published linear equations for approximation of herd effects in general were compared with the results of a structured literature review undertaken using PubMed searches to identify data on herd effects specific to influenza vaccination. A linear function was fitted to point estimates from the literature using the sum of squared residuals.

Results: The literature review identified 21 publications on 20 studies for inclusion. Six studies provided data on a mathematical relationship between effective vaccine coverage in subgroups and reduction of influenza infection in a larger unvaccinated population. These supported a linear relationship when effective vaccine coverage in a subgroup population was between 20% and 80%. Three studies evaluating herd effect at a community level, specifically induced by vaccinating children, provided point estimates for fitting linear equations. The fitted linear equation for herd protection in the target population for vaccination (children) was slightly less conservative than a previously published equation for herd effects in general. The fitted linear equation for herd protection in the non-target population was considerably less conservative than the previously published equation.

Conclusions: This method of approximating herd effect requires simple adjustments to the annual baseline risk of influenza in static models: (1) for the age group targeted by the childhood vaccination strategy (i.e. children); and (2) for other age groups not targeted (e.g. adults and/or elderly). Two approximations provide a linear relationship between effective coverage and reduction in the risk of infection. The first is a conservative approximation, recommended as a base-case for cost-effectiveness evaluations. The second, fitted to data extracted from a structured literature review, provides a less conservative estimate of herd effect, recommended for sensitivity analyses.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Flow diagram for the literature review.
Figure 2
Figure 2
Graphical relationships between vaccine coverage and herd effect in published studies. Relationship between effective vaccine coverage in subpopulation and relative risk of influenza infection in the population analysed for herd effect. Based on data from five studies [21-25]. Absolute values of the different studies reported in this figure cannot be compared. HCW, healthcare workers.
Figure 3
Figure 3
Point estimates from studies evaluating herd effect in a subpopulation in published studies. Single data points show point estimates of relative risk (RR) of influenza infection in subpopulation analysed for herd effect plotted against effective vaccine coverage in children. Point estimates from studies evaluating herd effects at a community level are shown as lines (derived by connecting lines through the point where RR = 1.0 and effective coverage = 0%) for comparison.
Figure 4
Figure 4
Linear relationships between effective vaccine coverage and herd effect. Point estimates identified from the literature review and linear relationships (derived from Equation 3 in Bauch et al. (2009) [12] or from fitting to general linear equation) between relative risk of infection in the unvaccinated population as a function of (A) effective coverage in children, and (B) change in effective vaccine coverage in entire population induced by varying levels of effective coverage in children.

Similar articles

Cited by

References

    1. Pitman RJ, Melegaro A, Gelb D, Siddiqui MR, Gay NJ, Edmunds WJ. Assessing the burden of influenza and other respiratory infections in England and Wales. J Infect. 2007;54:530–538. doi: 10.1016/j.jinf.2006.09.017. - DOI - PubMed
    1. McBean AM, Hebert PL. New estimates of influenza-related pneumonia and influenza hospitalizations among the elderly. Int J Infect Dis. 2004;8:227–235. doi: 10.1016/j.ijid.2004.04.013. - DOI - PubMed
    1. World Health Organization. Influenza (Seasonal). Fact Sheet No 211. http://www.who.int/mediacentre/factsheets/fs211/en/. 2009. 4-1-2012. Ref Type: Electronic Citation.
    1. Department of Health. Summary of flu immunisation policy. http://www.dh.gov.uk/en/Publichealth/Flu/Flugeneralinformation/DH_4001688. 10-9-2010. 16-4-2011. Ref Type: Electronic Citation.
    1. Postma MJ, Baltussen RM, Heijnen ML, de Berg LT, Jager JC. Pharmacoeconomics of influenza vaccination in the elderly: reviewing the available evidence. Drugs Aging. 2000;17:217–227. doi: 10.2165/00002512-200017030-00005. - DOI - PubMed

Publication types