Intramembrane particle aggregation in erythrocyte ghosts. II. The influence of spectrin aggregation
- PMID: 2324
- DOI: 10.1016/0005-2736(76)90433-8
Intramembrane particle aggregation in erythrocyte ghosts. II. The influence of spectrin aggregation
Abstract
Physicochemical properties of mixtures of spectrin and actin extracted from human erythrocyte ghosts have been correlated with ultrastructural changes observed in freeze-fractured erythrocyte membranes. (1) Extracted mixtures of spectrin and actin have a very low solubility (less than 30 mug/ml) near their isoelectric point, pH 4.8. These mixtures are also precipitated by low concentrations of Ca2+, Mg2+, polylysine or basic proteins. (2) All conditions which precipitate extracts of spectrin and actin also induce aggregation of the intramembrane particles in spectrin-depleted erythrocyte ghosts. Precipitation of the residual spectrin molecules into small patches on the cytoplasmic surface of the ghost membrane is thought to be the cause of particle aggregations, implying an association between the spectrin molecules and the intramembrane particles. (3) When fresh ghosts are exposed to conditions which precipitate extracts of spectrin and actin, only limited particle aggregation occurs. Instead, the contraction of the intact spectrin meshwork induced by the precipitation conditions compresses the lipid bilayer of the membrane, causing it to bleb off particle-free, protein-free vesicles. (4) The absence of protein in these lipid vesicles implies that all the proteins of the erythrocyte membrane are immobilized by association with either the spectrin meshwork or the intramembrane particles.
Similar articles
-
Intramembrane particle aggregation in erythrocyte ghosts. I. The effects of protein removal.J Cell Biol. 1974 Dec;63(3):1018-36. doi: 10.1083/jcb.63.3.1018. J Cell Biol. 1974. PMID: 4215819 Free PMC article.
-
Reconstitution of intramembrane particles in recombinants of erythrocyte protein band 3 and lipid: effects of spectrin-actin association.Proc Natl Acad Sci U S A. 1976 Nov;73(11):3891-5. doi: 10.1073/pnas.73.11.3891. Proc Natl Acad Sci U S A. 1976. PMID: 1069273 Free PMC article.
-
Intramembrane particle aggregation in erythrocyte membranes and band 3-lipid recombinants.Prog Clin Biol Res. 1977;17:453-8. Prog Clin Biol Res. 1977. PMID: 22086
-
The molecular basis for membrane - cytoskeleton association in human erythrocytes.J Cell Biochem. 1982;18(1):49-65. doi: 10.1002/jcb.1982.240180106. J Cell Biochem. 1982. PMID: 6461664 Review.
-
The spectrin-actin junction of erythrocyte membrane skeletons.Biochim Biophys Acta. 1989 Jan 18;988(1):107-21. doi: 10.1016/0304-4157(89)90006-3. Biochim Biophys Acta. 1989. PMID: 2642392 Review.
Cited by
-
Participation of spectrin in Sendai virus-induced fusion of human erythrocyte ghosts.Proc Natl Acad Sci U S A. 1978 Apr;75(4):1740-4. doi: 10.1073/pnas.75.4.1740. Proc Natl Acad Sci U S A. 1978. PMID: 205869 Free PMC article.
-
How do patch clamp seals form? A lipid bleb model.Pflugers Arch. 1990 Aug;416(6):758-62. doi: 10.1007/BF00370626. Pflugers Arch. 1990. PMID: 1701047
-
Spectrin, human erythrocyte shapes, and mechanochemical properties.Biophys J. 1986 Jan;49(1):319-27. doi: 10.1016/S0006-3495(86)83644-X. Biophys J. 1986. PMID: 3955175 Free PMC article.
-
Interactions between a membrane sialoglycoprotein and planar lipid bilayers.J Membr Biol. 1978 Feb 3;38(4):291-309. doi: 10.1007/BF01870148. J Membr Biol. 1978. PMID: 633353 No abstract available.
-
Modulation of fodrin (membrane skeleton) stability by cell-cell contact in Madin-Darby canine kidney epithelial cells.J Cell Biol. 1987 Jun;104(6):1527-37. doi: 10.1083/jcb.104.6.1527. J Cell Biol. 1987. PMID: 3584240 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous