Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(11):e49498.
doi: 10.1371/journal.pone.0049498. Epub 2012 Nov 16.

The rs1024611 regulatory region polymorphism is associated with CCL2 allelic expression imbalance

Affiliations

The rs1024611 regulatory region polymorphism is associated with CCL2 allelic expression imbalance

Minh-Hieu T Pham et al. PLoS One. 2012.

Abstract

CC chemokine ligand 2 (CCL2) is the most potent monocyte chemoattractant and inter-individual differences in its expression level have been associated with genetic variants mapping to the cis-regulatory regions of the gene. An A to G polymorphism in the CCL2 enhancer region at position -2578 (rs1024611; A>G), was found in most studies to be associated with higher serum CCL2 levels and increased susceptibility to a variety of diseases such as HIV-1 associated neurological disorders, tuberculosis, and atherosclerosis. However, the precise mechanism by which rs1024611influences CCL2 expression is not known. To address this knowledge gap, we tested the hypothesis that rs1024611G polymorphism is associated with allelic expression imbalance (AEI) of CCL2. We used haplotype analysis and identified a transcribed SNP in the 3'UTR (rs13900; C>T) can serve as a proxy for the rs1024611 and demonstrated that the rs1024611G allele displayed a perfect linkage disequilibrium with rs13900T allele. Allele-specific transcript quantification in lipopolysaccharide treated PBMCs obtained from heterozygous donors showed that rs13900T allele were expressed at higher levels when compared to rs13900C allele in all the donors examined suggesting that CCL2 is subjected to AEI and that that the allele containing rs1024611G is preferentially transcribed. We also found that AEI of CCL2 is a stable trait and could be detected in newly synthesized RNA. In contrast to these in vivo findings, in vitro assays with haplotype-specific reporter constructs indicated that the haplotype bearing rs1024611G had a lower or similar transcriptional activity when compared to the haplotype containing rs1024611A. This discordance between the in vivo and in vitro expression studies suggests that the CCL2 regulatory region polymorphisms may be functioning in a complex and context-dependent manner. In summary, our studies provide strong functional evidence and a rational explanation for the phenotypic effects of the CCL2 rs1024611G allele.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors hereby state that the co-authors of the aforementioned article, Srinivas Mummidi and Weijing He, are PLOS ONE Editorial Board Members. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1
Figure 1. Linkage disequilibrium plots for the shared polymorphisms in the CCL2 locus.
In all, 9 different polymorphisms that are located within a 25 kb region that spans the rs1024611 polymorphism are shown. The heatmaps display pairwise r2 (above diagonal) or D’ (below diagonal) for the each pair of polymorphisms. The relative physical distance between the markers is shown in the bottom of the plots. Populations shown are Yoruba in Ibadan, Nigeria (YRI), Japanese in Tokyo, Japan (JPT), Han Chinese in Beijing, China (CHB) and CEPH (Utah residents with ancestry from northern and western Europe, CEU) populations (HapMap data release #28 August 2010 on Build 36). Only unrelated individuals were used for the analysis. LD maps were constructed using the JLIN program .
Figure 2
Figure 2. Validation of a pyrosequencing assay to measure AEI at rs13900 polymorphism.
A. Schematic of the CCL2 gene structure and the LD between regulatory region polymorphism rs1024611 and the transcribed polymorphism rs13900. Numbered boxes are exons and the dashed lines connecting the exons are the introns. rs1024611 is located 2578 bp upstream of the CCL2 translational start site and rs13900 is located in the 3′UTR. B. Stacked bar graph represents the levels of the C (black) and T (grey) alleles in PCR products as determined by pyrosequencing. The PCRs were performed on the plasmid mixtures containing rs13900C and rs 13900T allele combined at the indicated ratios to simulate homozygous (10∶0 and 0∶10) and heterozygous samples (5∶5) as well as different allelic levels (other indicated ratios). Data shown is from one representative experiment from three independent experiments which gave similar results. C. Regression analysis of amplification products obtained from the rs13900 C- and rs13900 T-bearing plasmids combined at different proportions. The measured levels of the C allele (y-axis) were plotted against the expected levels (x-axis). There was a near linear relationship between these values (R2 = 0.9969) suggesting that the pyrosequencing can serve as a sensitive assay to measure the levels of rs13900C and rs13900T alleles in heterozygous individuals. Similar results were obtained with using genomic DNA mixtures from homozygous and heterozygous individuals (data not shown).
Figure 3
Figure 3. AEI of CCL2 in PBMC, cell lines and brain.
A. Allelic ratios for cDNA and gDNA were determined by pyrosequencing in eight independent donors who were heterozygous for rs13900 and rs1024611 polymorphisms. RNA was extracted from PBMCs treated with LPS for 3 h. and cDNA was synthesized. Pyrosequencing was performed as described under Methods. The ratios of expression (C vs. T) are log2-transformed and are shown on the y-axis. Statistical significance was determined using a two-tailed Wilcoxon rank sum test (p = 0.0009). B. Stability of allele-specific differences in the CCL2 expression in LPS treated PBMC from heterozygous individuals. AEI was assessed at three different times in 4 independent donors over a period of 4–6 months with a gap of at least 2 weeks between experiments in a single donor. The y-axis indicates the percent level of expression of the C or the T allele. C. AEI in nascent RNA. LPS treated PBMC were cultured in presence of ethylene uridine (EU). The EU RNA was subjected to a click reaction that adds a biotin handle which is then captured by streptavidin beads. cDNA was synthesized from the captured nascent RNA and PCR amplified and subjected to pyrosequencing. Data shown are from two independent biological replicates from a single donor. D. rs13900C allele is expressed at higher levels in heterozygous cell lines. Differential expression of CCL2 alleles in heterozygous cell lines (HeLa- cervical cancer cell line; HL60-myeloid leukemia cell line). cDNA was synthesized using RNA extracted from LPS treated cell lines and PCR and pyrosequencing were performed. E. AEI in brain tissue. RNA was extracted from post-mortem brain tissues obtained from HIV-1 infected and normal donors and the extent of AEI in CCL2 was assessed in heterozygous donors by pyrosequencing. F. Clinical features and pathology associated with the HIV-1 positive donors. HIVE- HIV encephalitis; PML-Progressive Multifocal Leukoencephalopathy; Donors B & D did not exhibit any neuropathology. Statistical significance for differences in the levels of expression between the alleles was calculated using a paired t-test (*, p<0.05, **, p<0.001, #, p<0.0001).
Figure 4
Figure 4. Epigenetic features associated with CCL2 locus in cell lines and normal human astrocytes.
(A–B) Relative location of the SNPs linked to rs13900 (highlighted by red dashed lines) to Encode DNase 1 hypersensitivity sites in the CCL2 locus as depicted in the UCSC genome browser (Panel A) and histone and DNase 1 tracks in the human epigenome browser (Panel B). Nucleotide numbering is according to hg19. The DNase 1 sites in panel A are depicted as boxes. The shade of the box is proportional to the signal strength detected with darker shaded boxes representing increased sensitivity to digestion. The numbers next to the boxes indicate the numbers of cell lines in which the region is hypersensitive. Panel B shows a wiggle plot depicting relative enrichment of the histone activation markers (H3K4me1, H3K4me3, H3K27Ac, indicated in red) and histone repressive marks (H3K27me3, indicated in green) across the CCL2 locus. The heatmap track was configured to set the threshold for the peaks at 20 and values higher than the threshold are shown in brown. Also shown are the tracks for DNAse 1 sensitivity (purple tracks). Regions in gray indicate the regions with higher peaks than the set threshold. (C–E) Heatmaps showing localized histone tracks in CCL2 5′-flanking regions that overlap with the linked polymorphisms. A 500 bp region that spans the indicated polymorphism is shown. No separate panel is shown for rs2857654 due to its proximity to rs1024611. Other details are as in Panel B. The source of the data used for the generation of the DNase 1 tracks is from the Geo accession number GSE29692 (DNaseI Hypersensitivity by Digital DNaseI from ENCODE/University of Washington; public release on June 03, 2011) and for the histone tracks is Geo Accession numbers GSM733763 (H3K27Ac), GSM733729 (H3K27Me), GSM733747 (H3K4me3), and GSM733710 (H3K4me1) deposited by the Bernstein Lab at the Broad Institute (Histone Modifications by ChIP-seq from ENCODE/Broad Institute; public release on Jun 2, 2011). The tracks were generated using ENCODE database and UCSC genome browser , and Human epigenome browser .
Figure 5
Figure 5. Transcriptional effects of the cis-regulatory region SNPs that are in LD with rs1024611.
(A–B). On the left is the schematic of the CCL2 haplotype-specific constructs that were examined for differences in transcriptional strength. The following pair of constructs bearing the indicated polymorphisms, CCL2 -6.0TCAG and CCL2 -6.0AAGC (rs1860190T, rs2857654C, rs1024611A, rs2857656G and rs1860190A, rs2857654A, rs1024611G, rs2857656C, respectively), were tested. The constructs were obtained from a single heterozygous donor exhibiting AEI. The constructs were transfected into U87MG astroglioma cells and were tested at basal level (panel A) and following TNF-α treatment (panel B). Luciferase activity was determined as described in the Methods. The relative luciferase units refer to the fold increase in activity obtained from the CCL2 -6.0 constructs relative to that obtained with the promoterless pGL4.16 vector. The data shown were obtained from 7 independent experiments and the error bars indicate the standard error of mean and statistical significance was calculated using two-tailed Student’s t test (**, p<0.0001, *, p = 0.02).

Similar articles

Cited by

References

    1. Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29: 313–326. - PMC - PubMed
    1. Melgarejo E, Medina MA, Sanchez-Jimenez F, Urdiales JL (2009) Monocyte chemoattractant protein-1: a key mediator in inflammatory processes. Int J Biochem Cell Biol 41: 998–1001. - PubMed
    1. Yadav A, Saini V, Arora S (2010) MCP-1: chemoattractant with a role beyond immunity: a review. Clin Chim Acta 411: 1570–1579. - PubMed
    1. Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354: 610–621. - PubMed
    1. Dhillon NK, Williams R, Callen S, Zien C, Narayan O, et al. (2008) Roles of MCP-1 in development of HIV-dementia. Front Biosci 13: 3913–3918. - PMC - PubMed

Publication types