Epigenetic regulation in pluripotent stem cells: a key to breaking the epigenetic barrier
- PMID: 23166402
- PMCID: PMC3539367
- DOI: 10.1098/rstb.2012.0292
Epigenetic regulation in pluripotent stem cells: a key to breaking the epigenetic barrier
Abstract
The differentiation and reprogramming of cells are accompanied by drastic changes in the epigenetic profiles of cells. Waddington's classical model clearly describes how differentiating cells acquire their cell identity as the developmental potential of an individual cell population declines towards the terminally differentiated state. The recent discovery of induced pluripotent stem cells as well as of somatic cell nuclear transfer provided evidence that the process of differentiation can be reversed. The identity of somatic cells is strictly protected by an epigenetic barrier, and these cells acquire pluripotency by breaking the epigenetic barrier by reprogramming factors such as Oct3/4, Sox2, Klf4, Myc and LIN28. This review covers the current understanding of the spatio-temporal regulation of epigenetics in pluripotent and differentiated cells, and discusses how cells determine their identity and overcome the epigenetic barrier during the reprogramming process.
Similar articles
-
NCoR/SMRT co-repressors cooperate with c-MYC to create an epigenetic barrier to somatic cell reprogramming.Nat Cell Biol. 2018 Apr;20(4):400-412. doi: 10.1038/s41556-018-0047-x. Epub 2018 Mar 12. Nat Cell Biol. 2018. PMID: 29531310
-
Epigenetic landscape of pluripotent stem cells.Antioxid Redox Signal. 2012 Jul 15;17(2):205-23. doi: 10.1089/ars.2011.4375. Epub 2012 Jan 11. Antioxid Redox Signal. 2012. PMID: 22044221 Free PMC article. Review.
-
Epigenetics: judge, jury and executioner of stem cell fate.Epigenetics. 2012 Aug;7(8):823-40. doi: 10.4161/epi.21141. Epub 2012 Jul 18. Epigenetics. 2012. PMID: 22805743 Free PMC article. Review.
-
Epigenetic changes to human umbilical cord blood cells cultured with three proteins indicate partial reprogramming to a pluripotent state.Exp Cell Res. 2010 Apr 1;316(6):927-39. doi: 10.1016/j.yexcr.2010.01.018. Epub 2010 Jan 22. Exp Cell Res. 2010. PMID: 20096686
-
Direct reprogramming of human neural stem cells by OCT4.Nature. 2009 Oct 1;461(7264):649-3. doi: 10.1038/nature08436. Nature. 2009. PMID: 19718018
Cited by
-
Coordinated transcriptional and post-transcriptional epigenetic regulation during skeletal muscle development and growth in pigs.J Anim Sci Biotechnol. 2022 Dec 1;13(1):146. doi: 10.1186/s40104-022-00791-3. J Anim Sci Biotechnol. 2022. PMID: 36457054 Free PMC article.
-
Identification of bioactive metabolites using activity metabolomics.Nat Rev Mol Cell Biol. 2019 Jun;20(6):353-367. doi: 10.1038/s41580-019-0108-4. Nat Rev Mol Cell Biol. 2019. PMID: 30814649 Free PMC article. Review.
-
Micro-management of pluripotent stem cells.Protein Cell. 2014 Jan;5(1):36-47. doi: 10.1007/s13238-013-0014-z. Epub 2014 Jan 28. Protein Cell. 2014. PMID: 24470117 Free PMC article. Review.
-
Histone methyltransferase G9a and H3K9 dimethylation inhibit the self-renewal of glioma cancer stem cells.Mol Cell Biochem. 2014 Sep;394(1-2):23-30. doi: 10.1007/s11010-014-2077-4. Epub 2014 May 16. Mol Cell Biochem. 2014. PMID: 24833465
-
Encounters across networks: Windows into principles of genomic regulation.Mar Genomics. 2019 Apr;44:3-12. doi: 10.1016/j.margen.2019.01.003. Epub 2019 Jan 17. Mar Genomics. 2019. PMID: 30661741 Free PMC article.
References
-
- Takahashi K, Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–67610.1016/j.cell.2006.07.024 (doi:10.1016/j.cell.2006.07.024) - DOI - DOI - PubMed
-
- Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–87210.1016/j.cell.2007.11.019 (doi:10.1016/j.cell.2007.11.019) - DOI - DOI - PubMed
-
- Aasen T, et al. 2008. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol. 26, 1276–128410.1038/nbt.1503 (doi:10.1038/nbt.1503) - DOI - DOI - PubMed
-
- Sun NF, et al. 2009. Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc. Natl Acad. Sci. USA 106, 15 720–15 72510.1073/pnas.0908450106 (doi:10.1073/pnas.0908450106) - DOI - DOI - PMC - PubMed
-
- Miyoshi K, Tsuji D, Kudoh K, Satomura K, Muto T, Itoh K, Noma T. 2010. Generation of human induced pluripotent stem cells from oral mucosa. J. Biosci. Bioeng. 110, 345–35010.1016/j.jbiosc.2010.03.004 (doi:10.1016/j.jbiosc.2010.03.004) - DOI - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials