Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Nov 8:9:263.
doi: 10.1186/1743-422X-9-263.

Pandemic influenza A virus codon usage revisited: biases, adaptation and implications for vaccine strain development

Affiliations

Pandemic influenza A virus codon usage revisited: biases, adaptation and implications for vaccine strain development

Natalia Goñi et al. Virol J. .

Abstract

Background: Influenza A virus (IAV) is a member of the family Orthomyxoviridae and contains eight segments of a single-stranded RNA genome with negative polarity. The first influenza pandemic of this century was declared in April of 2009, with the emergence of a novel H1N1 IAV strain (H1N1pdm) in Mexico and USA. Understanding the extent and causes of biases in codon usage is essential to the understanding of viral evolution. A comprehensive study to investigate the effect of selection pressure imposed by the human host on the codon usage of an emerging, pandemic IAV strain and the trends in viral codon usage involved over the pandemic time period is much needed.

Results: We performed a comprehensive codon usage analysis of 310 IAV strains from the pandemic of 2009. Highly biased codon usage for Ala, Arg, Pro, Thr and Ser were found. Codon usage is strongly influenced by underlying biases in base composition. When correspondence analysis (COA) on relative synonymous codon usage (RSCU) is applied, the distribution of IAV ORFs in the plane defined by the first two major dimensional factors showed that different strains are located at different places, suggesting that IAV codon usage also reflects an evolutionary process.

Conclusions: A general association between codon usage bias, base composition and poor adaptation of the virus to the respective host tRNA pool, suggests that mutational pressure is the main force shaping H1N1 pdm IAV codon usage. A dynamic process is observed in the variation of codon usage of the strains enrolled in these studies. These results suggest a balance of mutational bias and natural selection, which allow the virus to explore and re-adapt its codon usage to different environments. Recoding of IAV taking into account codon bias, base composition and adaptation to host tRNA may provide important clues to develop new and appropriate vaccines.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Association of purines at third codon positions with dimensional factor 1 generated by COA. In (A) and (B), the regression plots of the frequency of A3s and G3s versus the respective position of each strain in the first dimensional factor generated by the correspondence analysis on RSCU (COA-RSCU) are shown.
Figure 2
Figure 2
Position of the 310 H1N1 pdm IAV ORF’s in the plane defined by the first two major axes generated by COA. The percentage of inertia of the first and second axes of COA is indicated for both axes between parentheses. The input values for COA were the RSCU values of each strain.
Figure 3
Figure 3
Codon usage of H1N1 pdm IAV plotted against the codon usage of human cells. Colors reflect the nucleotide that occupies the first anticodon position (wobble position) of the corresponding codon. A, C, G and T are indicated by red, blue, green and black diamonds, respectively.

Similar articles

Cited by

References

    1. Neumann G, Brownlee GG, Fodor E, Kawaoka Y. Orthomyxovirus: replication, transcription, and polyadenylation. Curr Top Microbiol Immunol. 2004;283:121–143. - PubMed
    1. Ahn I, Son HS. Comparative study of the hemagglutinin and neuraminidase genes of Influenza A virus H3N2, H9N2 and H5N1 subtypes using bioinformatics techniques. Can J Microbiol. 2007;53:830–839. - PubMed
    1. Wolf YL, Viboud C, Holmes EC, Koonin EV, Lipman DJ. Long intervals of stasis punctuated by bursts of positive selection in the seasonal evolution of influenza A virus. Biol Direct. 2006;1:34. - PMC - PubMed
    1. Hillerman MR. Realities and enigmas of human viral influenza: pathogenesis, epidemiology and control. Vaccine. 2002;20:3068–3087. - PubMed
    1. De Jong JC, Rimmelzwaan GF, Fouchier RA, Osterhaus AD. Influenza virus: a master of metamorphosis. J Infection. 2000;40:218–228. - PubMed

Publication types