Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Dec;64(12):971-4.
doi: 10.1002/iub.1090. Epub 2012 Nov 5.

New functions of protein kinase Gcn2 in yeast and mammals

Affiliations
Free article
Review

New functions of protein kinase Gcn2 in yeast and mammals

José R Murguía et al. IUBMB Life. 2012 Dec.
Free article

Abstract

The classical role of the conserved Gcn2 kinase of yeast and mammals is to activate the translation of the transcription factors Gcn4 in yeast and activating transcription factor 4 in mammals by phosphorylating the eukaryotic translation initiation factor 2α. Gcn2 is activated by uncharged tRNAs in response to amino acid starvation and this regulatory system is important for tolerance to nutrient deprivation and other stresses and for development, differentiation, and normal function of mammalian organs. In the past few years, the classical Gcn2 pathway has been shown to modulate life span, tumor cell survival, and immune responses. In addition, Gcn2 modulates translation of novel mRNAs such as those of an unknown regulator of leucine transport and of sulfiredoxin SRX1 in yeast (activation of translation) and of inducible nitric oxide synthase, ErBb2, HIF1a, and 5'-terminal oligopyrimidine tract mRNAs in mammals (inhibition of translation). Finally, Gcn2 directly phosphorylates novel proteins such as methionyl-tRNA synthetase in mammals, and this triggers a pathway for DNA repair. These findings anticipate many expanding roles of Gcn2 in the future, with relevance for stress responses and human disease.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources