Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Oct 31;13(10):175.
doi: 10.1186/gb-2012-13-10-175.

The birth of the Epitranscriptome: deciphering the function of RNA modifications

The birth of the Epitranscriptome: deciphering the function of RNA modifications

Yogesh Saletore et al. Genome Biol. .

Abstract

Recent studies have found methyl-6-adenosine in thousands of mammalian genes, and this modification is most pronounced near the beginning of the 3' UTR. We present a perspective on current work and new single-molecule sequencing methods for detecting RNA base modifications.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Peak distribution. (a) We plotted the distribution of the peaks reported across gene bodies by the MeRIP-seq and m6A-seq studies. Note the very well defined enrichment for peaks near the stop codon and in the 3' UTR. The m6A-seq HepG2 peaks also show a peak in the 5' UTR. (b) The distribution of peaks across the transcriptome using the BWA-based MeRIPPeR pipeline [35] on the data from both groups. Data from [19] and [20]. CDS, coding sequence.
Figure 2
Figure 2
Peak distribution across the transcriptome. The peak distribution depicted is the average across the entire transcriptome. Peaks are mapped to transcripts and assigned to the following transcriptomic features: 1 kB upstream from the TSS and downstream from the transcription end site, 5' and 3' UTRs, coding segments (CDS), and exon and intron segments. In the bottom row, peaks mapping to transcripts with four or more exons are shown, with the first, penultimate and last exons separated into individual boxes, as are their neighboring introns. The remaining exons and introns are shown in the middle boxes as a contiguous segment. Genes with only two or three exons are shown in the middle row and single exon genes are shown in the top row. Data from [19] and [20].
Figure 3
Figure 3
Distribution of [AG]ACU motif sites. The [AG]ACU motif was used to find potential m6A sites within peaks, and the distribution of these potential sites across gene bodies plotted. Data from [19] and [20].
Figure 4
Figure 4
Single-molecule sequencing of RNA to detect epitranscriptomic changes. SMRT sequencing with the Pacific Biosciences RS shows longer times (inter-pulse distances) to incorporate m6A versus standard adenosines. (a) Experimental design for using a DNA primer in a reverse transcription reaction. Sequencing of the unmodified template shows, in a single-molecule sequencing trace, base incorporation via a reverse transcriptase-mediated cDNA synthesis reaction. (b) Shows sequencing as with (a), but using an RNA template with m6A instead of normal adenosines. Incorporation of thymines (T) show significant delay (longer inter-pulse distances). A.U. stands for normalized arbitrary units in fluorescence measurement. (c) Exponential fit of experimentally observed inter-pulse distances (IPDs). (d) Shows the difference between the average IPDs for native As and m6As. The average IPD in each case is the reverse of the exponential decay rate. The error bars indicate the range around each average IPD that includes 83% of the observed IPDs (that is, ±½ of standard deviation of the exponential fit). We used an Ansari-Bradley test in Matlab to confirm that the distribution functions were different (P = 0.0043).
Figure 5
Figure 5
Known types of RNA modifications. Known modifications to RNA bases are grouped by RNA type, base and species: (a) archaea; (b) bacteria; (c) eukarya; (d) all species. Data are compiled from the RNA Modification Database [13].

Similar articles

Cited by

References

    1. Brownlee GG, Sanger F, Barrell BG. Nucleotide sequence of 5S-ribosomal RNA from Escherichia coli. Nature. 1967;215:735–736. doi: 10.1038/215735a0. - DOI - PubMed
    1. Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes JC, Hutchison CA, Slocombe PM, Smith M. Nucleotide sequence of bacteriophage phi X174 DNA. Nature. 1977;265:687–695. doi: 10.1038/265687a0. - DOI - PubMed
    1. Johnson TB, Coghill RD. Researches on pyrimidines. C111. The discovery of 5-methyl-cytosine in tuberculnic acid, the nucleic acid of the tubercle bacillis. J Am Chem Soc. 1925;47:2838–2844. doi: 10.1021/ja01688a030. - DOI
    1. Wyatt GR, Cohen SS. A new pyrimidine base from bacteriophage nucleic acids. Nature. 1952;170:1072–1073. doi: 10.1038/1701072a0. - DOI - PubMed
    1. Ryan L, Ecker JR. Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res. 2009;19:959–966. doi: 10.1101/gr.083451.108. - DOI - PMC - PubMed

Publication types

LinkOut - more resources