Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(10):e47832.
doi: 10.1371/journal.pone.0047832. Epub 2012 Oct 16.

Spatial structure and climatic adaptation in African maize revealed by surveying SNP diversity in relation to global breeding and landrace panels

Affiliations

Spatial structure and climatic adaptation in African maize revealed by surveying SNP diversity in relation to global breeding and landrace panels

Ola T Westengen et al. PLoS One. 2012.

Abstract

Background: Climate change threatens maize productivity in sub-Saharan Africa. To ensure food security, access to locally adapted genetic resources and varieties is an important adaptation measure. Most of the maize grown in Africa is a genetic mix of varieties introduced at different historic times following the birth of the trans-Atlantic economy, and knowledge about geographic structure and local adaptations is limited.

Methodology: A panel of 48 accessions of maize representing various introduction routes and sources of historic and recent germplasm introductions in Africa was genotyped with the MaizeSNP50 array. Spatial genetic structure and genetic relationships in the African panel were analysed separately and in the context of a panel of 265 inbred lines representing global breeding material (based on 26,900 SNPs) and a panel of 1127 landraces from the Americas (270 SNPs). Environmental association analysis was used to detect SNPs associated with three climatic variables based on the full 43,963 SNP dataset.

Conclusions: The genetic structure is consistent between subsets of the data and the markers are well suited for resolving relationships and admixture among the accessions. The African accessions are structured in three clusters reflecting historical and current patterns of gene flow from the New World and within Africa. The Sahelian cluster reflects original introductions of Meso-American landraces via Europe and a modern introduction of temperate breeding material. The Western cluster reflects introduction of Coastal Brazilian landraces, as well as a Northeast-West spread of maize through Arabic trade routes across the continent. The Eastern cluster most strongly reflects gene flow from modern introduced tropical varieties. Controlling for population history in a linear model, we identify 79 SNPs associated with maximum temperature during the growing season. The associations located in genes of known importance for abiotic stress tolerance are interesting candidates for local adaptations.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Structure plot of the assignment probabilities in the African panel.
Each accession is represented by a bar and the highest Q group membership defines cluster assignment. Asterisks mark the three modern varieties included (from left to right: Staha; TMV1, Longe 5). The plot is based on 26,900 SNPs and the highest probability run for K = 3.
Figure 2
Figure 2. Map of African maize in relation to American landraces.
Population structure in the combined African panel and Landrace Panel based on STRUCTURE analysis with K = 10. Each geographic group from van Heerwaarden et al. [19 and each cluster in Africa is represented by a pie diagram whose composition shows admixture coefficients. The position of the pie diagrams on the map are defined by the average latitude and longitude of geographical group or cluster except for the North and Central US group where the pies were moved (indicated by lines) to avoid overlap. Like we excluded the US-derived varieties in South America and we furthermore excluded the Zambian accessions clustering with the Western African cluster and the Spanish accession from the Sahelian cluster.
Figure 3
Figure 3. Structure results for the combined African panel and association panel.
Plots of STRUCTURE results for the combined African panel and Association Panel showing: a) the Ln (probability of the data) for the values of K from 1 to 6; b) the similarity coefficient for nine different runs per K; and c) the delta K value.
Figure 4
Figure 4. Relationship between African maize and global reference panels.
Rooted Neighbor-joining tree of the combined African panel (Eastern, Sahelian, and Western Africa), Association Panel (NSS, SS and TS) and Landrace Panel (branches are named and coloured according to the clusters identified with K = 5 in the STRUCTURE analysis) based on 259 SNPs with bootstrap values in % from 1000 replications.
Figure 5
Figure 5. SNP associations with maximum temperature during growing season.
Manhattan plot of the log10P-values for 43,963 SNPs along the chromosomes (Y-axis) for association with maximum temperature during the growing season. Dotted line indicates significance at 1% false discovery rate (FDR) threshold. Highlighted SNPs are described specifically in the main text.

Similar articles

Cited by

References

    1. Harlan JR (1992) Crops and man, 2nd edn. Madison Wisconsin: American Society for Agronomy, Crop Science Society of America. 270 p.
    1. Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, et al. (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319: 607–610. - PubMed
    1. Lobell DB, Bänziger M, Magorokosho C, Vivek B (2011a) Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat Clim Chang 1: 42–45.
    1. Bänziger M, Setimela PS, Hodson D, Vivek B (2006) Breeding for improved abiotic stress tolerance in maize adapted to southern Africa. Agric Water Manag 80: 212–224.
    1. Hao Z, Li X, Xie C, Weng J, Li M, Zhang S, et al. (2011) Identification of functional genetic variations underlying drought in maize using SNP markers. J Integr Plant Biol 53: 641–652. - PubMed

Publication types

Grants and funding

This research was supported by the Centre for Development and the Environment, University of Oslo. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.