Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Jan;229(2):298-309.
doi: 10.1002/path.4104.

The myofibroblast matrix: implications for tissue repair and fibrosis

Affiliations
Review

The myofibroblast matrix: implications for tissue repair and fibrosis

Franco Klingberg et al. J Pathol. 2013 Jan.

Abstract

Myofibroblasts, and the extracellular matrix (ECM) in which they reside, are critical components of wound healing and fibrosis. The ECM, traditionally viewed as the structural elements within which cells reside, is actually a functional tissue whose components possess not only scaffolding characteristics, but also growth factor, mitogenic, and other bioactive properties. Although it has been suggested that tissue fibrosis simply reflects an 'exuberant' wound-healing response, examination of the ECM and the roles of myofibroblasts during fibrogenesis instead suggest that the organism may be attempting to recapitulate developmental programmes designed to regenerate functional tissue. Evidence of this is provided by the temporospatial re-emergence of embryonic ECM proteins by fibroblasts and myofibroblasts that induce cellular programmatic responses intended to produce a functional tissue. In the setting of wound healing (or physiological fibrosis), this occurs in a highly regulated and exquisitely choreographed fashion which results in cessation of haemorrhage, restoration of barrier integrity, and re-establishment of tissue function. However, pathological tissue fibrosis, which oftentimes causes organ dysfunction and significant morbidity or mortality, likely results from dysregulation of normal wound-healing processes or abnormalities of the process itself. This review will focus on the myofibroblast ECM and its role in both physiological and pathological fibrosis, and will discuss the potential for therapeutically targeting ECM proteins for treatment of fibrotic disorders.

PubMed Disclaimer

Conflict of interest statement

No conflicts of interest were declared.

Figures

Figure 1
Figure 1
The myofibroblast matrix. Schematic of some of the ECM molecules relevant to tissue fibrosis. The myofibroblast (centre, with red stress fibres containing α-smooth muscle actin) lies enmeshed in its ECM (green). Components of the ECM are depicted (clockwise, from the 12 o’clock position): elastins, fibrillins and LTBPs, proteoglycans, tenascins, matricellular proteins, collagens, and fibronectins. The myofibroblast encounters, signals, and modulates the expression of these various components as outlined in the text.

Similar articles

Cited by

References

    1. Hinz B, Phan SH, Thannickal VJ, et al. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol. 2012;180:1340–1355. - PMC - PubMed
    1. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214:199–210. - PMC - PubMed
    1. Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol. 2007;127:526–537. - PubMed
    1. Hardie WD, Glasser SW, Hagood JS. Emerging concepts in the pathogenesis of lung fibrosis. Am J Pathol. 2009;175:3–16. - PMC - PubMed
    1. Araya J, Nishimura SL. Fibrogenic reactions in lung disease. Annu Rev Pathol. 2010;5:77–98. - PubMed

Publication types

Substances