The optic nerve: a "mito-window" on mitochondrial neurodegeneration
- PMID: 22960139
- PMCID: PMC3629569
- DOI: 10.1016/j.mcn.2012.08.004
The optic nerve: a "mito-window" on mitochondrial neurodegeneration
Abstract
Retinal ganglion cells (RGCs) project their long axons, composing the optic nerve, to the brain, transmitting the visual information gathered by the retina, ultimately leading to formed vision in the visual cortex. The RGC cellular system, representing the anterior part of the visual pathway, is vulnerable to mitochondrial dysfunction and optic atrophy is a very frequent feature of mitochondrial and neurodegenerative diseases. The start of the molecular era of mitochondrial medicine, the year 1988, was marked by the identification of a maternally inherited form of optic atrophy, Leber's hereditary optic neuropathy, as the first disease due to mitochondrial DNA point mutations. The field of mitochondrial medicine has expanded enormously over the last two decades and many neurodegenerative diseases are now known to have a primary mitochondrial etiology or mitochondrial dysfunction plays a relevant role in their pathogenic mechanism. Recent technical advancements in neuro-ophthalmology, such as optical coherence tomography, prompted a still ongoing systematic re-investigation of retinal and optic nerve involvement in neurodegenerative disorders. In addition to inherited optic neuropathies, such as Leber's hereditary optic neuropathy and dominant optic atrophy, and in addition to the syndromic mitochondrial encephalomyopathies or mitochondrial neurodegenerative disorders such as some spinocerebellar ataxias or familial spastic paraparesis and other disorders, we draw attention to the involvement of the optic nerve in classic age-related neurodegenerative disorders such as Parkinson and Alzheimer disease. We here provide an overview of optic nerve pathology in these different clinical settings, and we review the possible mechanisms involved in the pathogenesis of optic atrophy. This may be a model of general value for the field of neurodegeneration. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.
Copyright © 2012 Elsevier Inc. All rights reserved.
Figures
Similar articles
-
Optic neuropathies: the tip of the neurodegeneration iceberg.Hum Mol Genet. 2017 Oct 1;26(R2):R139-R150. doi: 10.1093/hmg/ddx273. Hum Mol Genet. 2017. PMID: 28977448 Free PMC article. Review.
-
Retinal ganglion cell neurodegeneration in mitochondrial inherited disorders.Biochim Biophys Acta. 2009 May;1787(5):518-28. doi: 10.1016/j.bbabio.2009.02.024. Epub 2009 Mar 5. Biochim Biophys Acta. 2009. PMID: 19268652 Review.
-
Optic nerve degeneration and mitochondrial dysfunction: genetic and acquired optic neuropathies.Neurochem Int. 2002 May;40(6):573-84. doi: 10.1016/s0197-0186(01)00129-2. Neurochem Int. 2002. PMID: 11850115 Review.
-
Emerging Mitochondrial Therapeutic Targets in Optic Neuropathies.Pharmacol Ther. 2016 Sep;165:132-52. doi: 10.1016/j.pharmthera.2016.06.004. Epub 2016 Jun 8. Pharmacol Ther. 2016. PMID: 27288727 Review.
-
Mitochondrial dysfunction as a cause of optic neuropathies.Prog Retin Eye Res. 2004 Jan;23(1):53-89. doi: 10.1016/j.preteyeres.2003.10.003. Prog Retin Eye Res. 2004. PMID: 14766317 Review.
Cited by
-
Syndromic parkinsonism and dementia associated with OPA1 missense mutations.Ann Neurol. 2015 Jul;78(1):21-38. doi: 10.1002/ana.24410. Epub 2015 Jun 10. Ann Neurol. 2015. PMID: 25820230 Free PMC article.
-
An Overview of Mitochondrial Protein Defects in Neuromuscular Diseases.Biomolecules. 2021 Nov 4;11(11):1633. doi: 10.3390/biom11111633. Biomolecules. 2021. PMID: 34827632 Free PMC article. Review.
-
Ophthalmic manifestations of inherited neurodegenerative disorders.Nat Rev Neurol. 2014 Jun;10(6):349-62. doi: 10.1038/nrneurol.2014.79. Epub 2014 May 20. Nat Rev Neurol. 2014. PMID: 24840976 Review.
-
OUTER RETINAL TUBULATION IN ADVANCED AGE-RELATED MACULAR DEGENERATION: Optical Coherence Tomographic Findings Correspond to Histology.Retina. 2015 Jul;35(7):1339-50. doi: 10.1097/IAE.0000000000000471. Retina. 2015. PMID: 25635579 Free PMC article.
-
Reduction of Retinal Thickness Ipsilateral to Hippocampal Sclerosis in Epilepsy.Front Neurol. 2021 May 11;12:663559. doi: 10.3389/fneur.2021.663559. eCollection 2021. Front Neurol. 2021. PMID: 34046004 Free PMC article.
References
-
- Alavi M.V., Bette S., Schimpf S., Schuettauf F., Schraermeyer U., Wehrl H.F., Ruttiger L., Beck S.C., Tonagel F., Pichler B.J., Knipper M., Peters T., Laufs J., Wissinger B. A splice site mutation in the murine Opa1 gene features pathology of autosomal dominant optic atrophy. Brain. 2007;130:1029–1042. - PubMed
-
- Albano E., Bellomo G., Parola M., Dianzani M.U. Stimulation of lipid peroxidation increases the intracellular calcium content of isolated hepatocytes. Biochim. Biophys. Acta. 1991;1091:310–316. - PubMed
-
- Alexander C., Votruba M., Pesch U.E., Thiselton D.L., Mayer S., Moore A., Rodriguez M., Kellner U., Leo-Kottler B., Auburger G., Bhattacharya S.S., Wissinger B. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat. Genet. 2000;26:211–215. - PubMed
-
- Amati-Bonneau P., Valentino M.L., Reynier P., Gallardo M.E., Bornstein B., Boissiere A., Campos Y., Rivera H., de la Aleja J.G., Carroccia R., Iommarini L., Labauge P., Figarella-Branger D., Marcorelles P., Furby A., Beauvais K., Letournel F., Liguori R., La Morgia C., Montagna P., Liguori M., Zanna C., Rugolo M., Cossarizza A., Wissinger B., Verny C., Schwarzenbacher R., Martin M.A., Arenas J., Ayuso C., Garesse R., Lenaers G., Bonneau D., Carelli V. OPA1 mutations induce mitochondrial DNA instability and optic atrophy ‘plus’ phenotypes. Brain. 2008;131:338–351. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources