Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(8):e40387.
doi: 10.1371/journal.pone.0040387. Epub 2012 Aug 30.

A novel MCPH1 isoform complements the defective chromosome condensation of human MCPH1-deficient cells

Affiliations

A novel MCPH1 isoform complements the defective chromosome condensation of human MCPH1-deficient cells

Ioannis Gavvovidis et al. PLoS One. 2012.

Abstract

Biallelic mutations in MCPH1 cause primary microcephaly (MCPH) with the cellular phenotype of defective chromosome condensation. MCPH1 encodes a multifunctional protein that notably is involved in brain development, regulation of chromosome condensation, and DNA damage response. In the present studies, we detected that MCPH1 encodes several distinct transcripts, including two major forms: full-length MCPH1 (MCPH1-FL) and a second transcript lacking the six 3' exons (MCPH1Δe9-14). Both variants show comparable tissue-specific expression patterns, demonstrate nuclear localization that is mediated independently via separate NLS motifs, and are more abundant in certain fetal than adult organs. In addition, the expression of either isoform complements the chromosome condensation defect found in genetically MCPH1-deficient or MCPH1 siRNA-depleted cells, demonstrating a redundancy of both MCPH1 isoforms for the regulation of chromosome condensation. Strikingly however, both transcripts are regulated antagonistically during cell-cycle progression and there are functional differences between the isoforms with regard to the DNA damage response; MCPH1-FL localizes to phosphorylated H2AX repair foci following ionizing irradiation, while MCPH1Δe9-14 was evenly distributed in the nucleus. In summary, our results demonstrate here that MCPH1 encodes different isoforms that are differentially regulated at the transcript level and have different functions at the protein level.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. The human MCPH1 gene, its transcripts and predicted polypeptides.
(A) Exon (filled boxes) and intron (open boxes) organization of the 241 906-bp encompassing MCPH1 gene locus. Red arrows indicate the positions of the regular and of the alternative (*) polyadenylation sites (polyA). (B) The full-length (FL) and the alternative transcripts Δe9–14, Δe1–3, and Δe8: numbered boxes indicate exons, black filled areas illustrate the entire coding regions (CDS), and colored areas show untranslated regions (UTR) as indicated. (C) Predicted polypeptides representing MCPH1 isoforms: blue boxes depict the positions of BRCT domains, while green boxes represent the site of the canonical nuclear localization signal sequence (NLS). Two additional amino acids, S and M, are included into MCPH1Δe9–14 prior to premature termination (#). (D) Expression of MCPH1 transcript variants. Columns represent the levels of MCPH1 transcripts in indicated adult and fetal tissues determined using quantitative real-time PCR. Data represent means ± one S.D. of three independent experiments and are normalized to the geometric mean levels of UBC, GAPDH, B2M, and HPRT1 cDNA.
Figure 2
Figure 2. Cell cycle-dependent regulation of MCPH1 transcripts.
(A) HeLa cells were arrested in G1 phase by double thymidine block. Cultures harvested at various time points after release were analyzed using flow cytometry. (B) Plots represent numbers of cells as a function of their DNA content. A total of 90% of the cells synchronously progressed into S phase (0–4 h), entered G2 phase (4–6 h), started passing through mitosis after 7 h, and were completely in G1 phase after 12 h. (C) Levels of MCPH1-FL (diamonds, solid line), MCPH1Δe9–14 (squares, dotted line), and MCPH1Δe8 (circles, dashed line) mRNA. Data represent means ± S.E.M. of three independent experiments and are normalized to the expression levels of GAPDH and B2M.
Figure 3
Figure 3. Expression of GFP-tagged MCPH1 isoforms in MCPH1-deficient 562T fibroblasts.
(A) Cells were transduced with GFP-tagged coding sequence of full-length MCPH1 cDNA in a conditional, doxycycline (DOX)-dependent construct with a second regulatory construct trKRAB. Cultures were exposed to increasing DOX concentrations as indicated. Whole-cell extracts were prepared 72 h later and analyzed for the expression of MCPH1 using immunoblotting with an antibody against GFP. (B) The graph shows MCPH1 band intensity relative to the loading control p84 plotted against DOX concentrations. Data represent means ± one S.D. of three independent assays. (C) Immunoblot analysis of whole-cell extracts from non-transduced (NT) 562T cells (lane 1), 562T cells transduced with the regulatory construct only (lane 2), with GFP alone (30 kDa, lane 3) or with GFP fused to MCPH1-FL (120 kDa, lane 4), MCPH1Δe9–14 (94 kDa, lane 5), MCPH1Δe8 (78 kDa, lane 6), or MCPH1Δe1–7 (96 kDa, lane 7) with an antibody against GFP.. Nuclear matrix protein p84 served as the loading control.
Figure 4
Figure 4. Complementation of PCC in patient fibroblasts.
Cells are derived from patient with homozygous truncating mutation c.427dupA (p.T143NfsX5) in MCPH1. Chromosome preparations from (A) non-transduced cells and (B) cells expressing GFP only, or GFP fusions with (C) full-length, (D) Δe9–14, (E) Δe8, or (F) Δe1–7 MCPH1. Arrows indicate nuclei of prophase-like cells (PLCs). (G) Mean rates of PLCs (filled columns) of slides from A-F. Open columns represent mean mitotic indices. Error bars denote the S.D. of counts of approximately 1000 cells each from three independent experiments.
Figure 5
Figure 5. Only simultaneous downregulation of endogenous full-length (FL) and Δe9–14 MCPH1 induces PCC.
(A) Immunoblots with an anti-MCPH1 antibody after transfection of HeLa cells with different siRNAs demonstrate efficient downregulation of either MCPH1-FL (93 kDa) or MCPH1Δe9–14 (70 kDa) or both isoforms (exon 8 and FL+ Δe9–14) but no downregulation in response to non-targeting siRNA or mock-transfected controls. Nuclear matrix protein p84 served as a loading control. (B) Columns represent PLC rates in HeLa cells transfected with MCPH1 siRNA as indicated in A. Error bars denote the S.D.
Figure 6
Figure 6. Intracellular distribution of MCPH1 isoforms.
(A) MCPH1-deficient fibroblasts expressing GFP alone or the specified GFP-MCPH1 fusion proteins were fractionated and cytoplasmic (Cyt) and nuclear (Nuc) protein extracts were analyzed using immunoblotting with an antibody against GFP. The nuclear matrix protein p84 and GAPDH were used as index proteins and loading controls. (B) Cells indicated in A stained with an anti-GFP antibody (green), counterstained with DAPI (blue) and analyzed using fluorescence microscopy. Arrows indicate the prophase-like nuclei. Scale bar = 10 µm. All MCPH1 isoforms exhibit unambiguous nuclear localization.
Figure 7
Figure 7. Nuclear localization signals (NLSs) in human MCPH1.
(A) The positions of the putative NLS motifs and their amino acid sequences are highlighted in the diagram of the full-length MCPH1. (B) Subcellular distribution of GFP-tagged wild-type (wt) MCPH1 and mutants with deleted NLSs as indicated were transiently expressed in HeLa cells. Cytoplasmic (Cyt) and nuclear (Nuc) protein extracts were immunoblotted with an antibody against GFP (left panel). GAPDH (center panel) and the nuclear matrix protein p84 (right panel) served as index proteins and loading controls. (C) Ratios of relative GFP band intensity in the cytoplasmic (Cyt) vs. nuclear (Nuc) fractions. Absolute numbers were assessed using densitometry and normalized to the loading controls. Columns designate means, and error bars represent the S.D. from three different experiments. Significant differences to wt MCPH1 are indicated by asterisks denoting p<0.05 (Student's t-test). Scale bar = 10 µm.
Figure 8
Figure 8. Colocalization of MCPH1 and γH2AX in ionizing irradiation-induced nuclear foci.
(A) Non-transduced (NT) MCPH1-deficient 562T cells and 562T stably expressing GFP alone or the specified GFP-MCPH1 fusion proteins were fixed 2 h after irradiation with 10 Gy and co-stained with antibodies against γH2AX (red) and GFP (green). Nuclei were counterstained with DAPI (blue). Rectangles frame areas, which are shown enlarged in the bottom row. MCPH1 focus formation was observed for MCPH1 isoforms containing the C-terminal BRCT tandem. (B) Quantification of cells expressing foci containing γH2AX and/or (C) MCPH1. Error bars indicate the S.D. of three different measurements, counting approximately 300 nuclei. * p≤0.05 vs. NT as calculated using the Student's t-test.

Similar articles

Cited by

References

    1. Cox J, Jackson AP, Bond J, Woods CG (2006) What primary microcephaly can tell us about brain growth. Trends Mol Med 12 (8) 358–366. - PubMed
    1. Desir J, Cassart M, David P, van Bogaert P, Abramowicz M (2008) Primary microcephaly with ASPM mutation shows simplified cortical gyration with antero-posterior gradient pre- and post-natally. Am J Med Genet A 146 (11) 1439–1443. - PubMed
    1. Jackson AP, McHale DP, Campbell DA, Jafri H, Rashid Y, et al. (1998) Primary autosomal recessive microcephaly (MCPH1) maps to chromosome 8p22-pter. Am J Hum Genet 63 (2) 541–546. - PMC - PubMed
    1. Roberts E, Jackson AP, Carradice AC, Deeble VJ, Mannan J, et al. (1999) The second locus for autosomal recessive primary microcephaly (MCPH2) maps to chromosome 19q13.1–13.2. Eur J Hum Genet 7 (7) 815–820. - PubMed
    1. Moynihan L, Jackson AP, Roberts E, Karbani G, Lewis I, et al. (2000) A third novel locus for primary autosomal recessive microcephaly maps to chromosome 9q34. Am J Hum Genet 66 (2) 724–727. - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources