Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Aug;393(8):817-27.
doi: 10.1515/hsz-2012-0136.

Anticancer peptide NK-2 targets cell surface sulphated glycans rather than sialic acids

Affiliations

Anticancer peptide NK-2 targets cell surface sulphated glycans rather than sialic acids

Stephanie Gross et al. Biol Chem. 2012 Aug.

Abstract

Some antimicrobial peptides have emerged as potential anticancer agents. In contrast to chemotherapeutics, they act primarily by physical disruption of the cancer cell membrane. Selective targeting of these cationic peptides still remains elusive. We focus on the interaction of α-helical peptides NK-2, cathelicidin LL32, and melittin with PC-3 prostate cancer cells, and we provide strong evidence that, amongst the anionic glycans covering the cell surface, sulphated carbohydrates rather than sialic acids are the preferred interaction sites of the peptides. To test the significance of cell surface carbohydrates, a glycan microarray screen with fluorescently labelled peptides has been performed. Amongst 465 mammalian glycan structures on the chip, more than 20 different sulphated glycans were detected as the preferred binding partners of the peptide NK-2. The amount of peptide bound to sialic acid containing oligosaccharides was close to background level. These findings were consistent with microcalorimetric experiments revealing high and low binding enthalpies of peptides to sulphated carbohydrates and to sialic acid, respectively. Enzymatic desialylation of PC-3 cells did not affect peptide-mediated changes in cell metabolism, cell membrane permeabilisation, killing rate, and kinetics. Finally, the cytotoxicity of all peptides could be drastically impaired through the competitive inhibition by chondroitin sulphate, but not by sialic acid and sialylated fetuin.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources