Scaling the druggability landscape of human bromodomains, a new class of drug targets
- PMID: 22928775
- PMCID: PMC3454531
- DOI: 10.1021/jm3011977
Scaling the druggability landscape of human bromodomains, a new class of drug targets
Figures
Comment on
-
Druggability analysis and structural classification of bromodomain acetyl-lysine binding sites.J Med Chem. 2012 Sep 13;55(17):7346-59. doi: 10.1021/jm300346w. Epub 2012 Jul 12. J Med Chem. 2012. PMID: 22788793 Free PMC article.
Similar articles
-
Druggability of methyl-lysine binding sites.J Comput Aided Mol Des. 2011 Dec;25(12):1171-8. doi: 10.1007/s10822-011-9505-2. Epub 2011 Dec 7. J Comput Aided Mol Des. 2011. PMID: 22146969
-
Discovery and Characterization of GSK2801, a Selective Chemical Probe for the Bromodomains BAZ2A and BAZ2B.J Med Chem. 2016 Feb 25;59(4):1410-24. doi: 10.1021/acs.jmedchem.5b00209. Epub 2015 Apr 6. J Med Chem. 2016. PMID: 25799074 Free PMC article.
-
Aim for the Readers! Bromodomains As New Targets Against Chagas' Disease.Curr Med Chem. 2019;26(36):6544-6563. doi: 10.2174/0929867325666181031132007. Curr Med Chem. 2019. PMID: 30378479 Review.
-
Lysine acetylation and the bromodomain: a new partnership for signaling.Bioessays. 2004 Oct;26(10):1076-87. doi: 10.1002/bies.20104. Bioessays. 2004. PMID: 15382140 Review.
-
A Subset of Human Bromodomains Recognizes Butyryllysine and Crotonyllysine Histone Peptide Modifications.Structure. 2015 Oct 6;23(10):1801-1814. doi: 10.1016/j.str.2015.08.004. Epub 2015 Sep 10. Structure. 2015. PMID: 26365797
Cited by
-
Chemical Space Expansion of Bromodomain Ligands Guided by in Silico Virtual Couplings (AutoCouple).ACS Cent Sci. 2018 Feb 28;4(2):180-188. doi: 10.1021/acscentsci.7b00401. Epub 2018 Feb 7. ACS Cent Sci. 2018. PMID: 29532017 Free PMC article.
-
Protein dynamics and structural waters in bromodomains.PLoS One. 2017 Oct 27;12(10):e0186570. doi: 10.1371/journal.pone.0186570. eCollection 2017. PLoS One. 2017. PMID: 29077715 Free PMC article.
-
Bromodomain and BET family proteins as epigenetic targets in cancer therapy: their degradation, present drugs, and possible PROTACs.RSC Adv. 2020 Dec 24;11(2):612-636. doi: 10.1039/d0ra07971e. eCollection 2020 Dec 24. RSC Adv. 2020. PMID: 35746919 Free PMC article. Review.
-
Inhibitors of BRD4 Protein from a Marine-Derived Fungus Alternaria sp. NH-F6.Mar Drugs. 2017 Mar 16;15(3):76. doi: 10.3390/md15030076. Mar Drugs. 2017. PMID: 28300771 Free PMC article.
-
Bromodomain and extra-terminal motif inhibitors: a review of preclinical and clinical advances in cancer therapy.Future Sci OA. 2019 Jan 29;5(3):FSO372. doi: 10.4155/fsoa-2018-0115. eCollection 2019 Mar. Future Sci OA. 2019. PMID: 30906568 Free PMC article. Review.
References
-
- Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705. - PubMed
-
- Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM. Structure and ligand of a histone acetyltransferase bromodomain. Nature. 1999;399:491–496. - PubMed
- Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D, Felletar I, Volkmer R, Muller S, Pawson T, Gingras AC, Arrowsmith CH, Knapp S. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell. 2012;149:214–231. - PMC - PubMed
- Jacobson RH, Ladurner AG, King DS, Tjian R. Structure and function of a human TAFII250 double bromodomain module. Science. 2000;288:1422–1425. - PubMed
- Owen DJ, Ornaghi P, Yang JC, Lowe N, Evans PR, Ballario P, Neuhaus D, Filetici P, Travers AA. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase Gcn5p. EMBO J. 2000;19:6141–6149. - PMC - PubMed
- Sanchez R, Zhou MM. The role of human bromodomains in chromatin biology and gene transcription. Curr Opin Drug Discov Devel. 2009;12:659–665. - PMC - PubMed
- Zeng L, Zhou MM. Bromodomain: an acetyl-lysine binding domain. FEBS Lett. 2002;513:124–128. - PubMed
-
- Borah JC, Mujtaba S, Karakikes I, Zeng L, Muller M, Patel J, Moshkina N, Morohashi K, Zhang W, Gerona-Navarro G, Hajjar RJ, Zhou MM. A small molecule binding to the coactivator CREB-binding protein blocks apoptosis in cardiomyocytes. Chem Biol. 2011;18:531–541. - PMC - PubMed
- Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI, Robson SC, Chung CW, Hopf C, Savitski MM, Huthmacher C, Gudgin E, Lugo D, Beinke S, Chapman TD, Roberts EJ, Soden PE, Auger KR, Mirguet O, Doehner K, Delwel R, Burnett AK, Jeffrey P, Drewes G, Lee K, Huntly BJ, Kouzarides T. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature. 2011;478:529–533. - PMC - PubMed
- Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, Chesi M, Schinzel AC, McKeown MR, Heffernan TP, Vakoc CR, Bergsagel PL, Ghobrial IM, Richardson PG, Young RA, Hahn WC, Anderson KC, Kung AL, Bradner JE, Mitsiades CS. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146:904–917. - PMC - PubMed
- Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA, Bergeron L, Sims RJ. Targeting MYC dependence in cancer by inhibiting BET bromodomains. P Natl Acad Sci USA. 2011;108:16669–16674. - PMC - PubMed
- Zhang G, Liu R, Zhong Y, Plotnikov AN, Zhang W, Zeng L, Rusinova E, Gerona-Nevarro G, Moshkina N, Joshua J, Chuang PY, Ohlmeyer M, He JC, Zhou MM. Down-regulation of NF-kappaB transcriptional activity in HIV-associated kidney disease by BRD4 inhibition. J Biol Chem. 2012;287:28840–28851. - PMC - PubMed
- Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, Magoon D, Qi J, Blatt K, Wunderlich M, Taylor MJ, Johns C, Chicas A, Mulloy JC, Kogan SC, Brown P, Valent P, Bradner JE, Lowe SW, Vakoc CR. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 2011;478:524–528. - PMC - PubMed
-
- Cheng AC, Coleman RG, Smyth KT, Cao Q, Soulard P, Caffrey DR, Salzberg AC, Huang ES. Structure-based maximal affinity model predicts small-molecule druggability. Nat Biotechnol. 2007;25:71–75. - PubMed
- Hajduk PJ, Huth JR, Tse C. Predicting protein druggability. Drug Discov Today. 2005;10:1675–1682. - PubMed
- Halgren TA. Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model. 2009;49:377–389. - PubMed
- Krasowski A, Muthas D, Sarkar A, Schmitt S, Brenk R. DrugPred: A Structure-Based Approach To Predict Protein Druggability Developed Using an Extensive Nonredundant Data Set. J Chem Inf Model. 2011;51:2829–2842. - PubMed
- Le Guilloux V, Schmidtke P, Tuffery P. Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics. 2009;10:168. - PMC - PubMed
- Nisius B, Sha F, Gohlke H. Structure-based computational analysis of protein binding sites for function and druggability prediction. J Biotechnol. 2012;159:123–134. - PubMed
- Schmidtke P, Barril X. Understanding and Predicting Druggability. A High-Throughput Method for Detection of Drug Binding Sites. J Med Chem. 2010;53:5858–5867. - PubMed
- Seco J, Luque FJ, Barril X. Binding Site Detection and Druggability Index from First Principles. J Med Chem. 2009;52:2363–2371. - PubMed
- Sheridan RP, Maiorov VN, Holloway MK, Cornell WD, Gao YD. Drug-like Density: A Method of Quantifying the "Bindability" of a Protein Target Based on a Very Large Set of Pockets and Drug-like Ligands from the Protein Data Bank. J Chem Inf Model. 2010;50:2029–2040. - PubMed
- Sugaya N, Ikeda K. Assessing the druggability of protein-protein interactions by a supervised machine-learning method. BMC Bioinformatics. 2009;10:263. - PMC - PubMed
- Volkamer A, Kuhn D, Grombacher T, Rippmann F, Rarey M. Combining Global and Local Measures for Structure-Based Druggability Predictions. J Chem Inf Model. 2012;52:360–372. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources