Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Oct 15;125(Pt 20):4923-33.
doi: 10.1242/jcs.112243. Epub 2012 Aug 1.

A novel protein complex, Mesh-Ssk, is required for septate junction formation in the Drosophila midgut

Affiliations

A novel protein complex, Mesh-Ssk, is required for septate junction formation in the Drosophila midgut

Yasushi Izumi et al. J Cell Sci. .

Abstract

Septate junctions (SJs) are specialized intercellular junctions that restrict the free diffusion of solutes through the paracellular route in invertebrate epithelia. In arthropods, two morphologically different types of SJs have been reported: pleated SJs and smooth SJs (sSJs), which are found in ectodermally and endodermally derived epithelia, respectively. However, the molecular and functional differences between these SJ types have not been fully elucidated. Here, we report that a novel sSJ-specific component, a single-pass transmembrane protein, which we term 'Mesh' (encoded by CG31004), is highly concentrated in Drosophila sSJs. Compromised mesh expression causes defects in the organization of sSJs, in the localizations of other sSJ proteins, and in the barrier function of the midgut. Ectopic expression of Mesh in cultured cells induces cell-cell adhesion. Mesh forms a complex with Ssk, another sSJ-specific protein, and these proteins are mutually interdependent for their localization. Thus, a novel protein complex comprising Mesh and Ssk has an important role in sSJ formation and in intestinal barrier function in Drosophila.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources