Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jul 24:2:79.
doi: 10.3389/fonc.2012.00079. eCollection 2012.

Adhesion receptors as therapeutic targets for circulating tumor cells

Affiliations

Adhesion receptors as therapeutic targets for circulating tumor cells

Jiahe Li et al. Front Oncol. .

Abstract

Metastasis contributes to >90% of cancer-associated mortality. Though primary tumors can be removed by surgical resection or chemo/radiotherapy, metastatic disease is a great challenge to treatment due to its systemic nature. As metastatic "seeds," circulating tumor cells (CTCs) are believed to be responsible for dissemination from a primary tumor to anatomically distant organs. Despite the possibility of physical trapping of CTCs in microvessels, recent advances have provided insights into the involvement of a variety of adhesion molecules on CTCs. Such adhesion molecules facilitate direct interaction with the endothelium in specific tissues or indirectly through leukocytes. Importantly, significant progress has been made in understanding how these receptors confer enhanced invasion and survival advantage during hematogenous circulation of CTCs through recruitment of macrophages, neutrophils, platelets, and other cells. This review highlights the identification of novel adhesion molecules and how blocking their function can compromise successful seeding and colonization of CTCs in new microenvironment. Encouraged by existing diagnostic tools to identify and isolate CTCs, strategic targeting of these adhesion molecules to deliver conventional chemotherapeutics or novel apoptotic signals is discussed for the neutralization of CTCs in the circulation.

Keywords: CTCs; adhesion; cancer therapy; receptors.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The heterotypic cell interactions between CTCs and haemopotoeic cells in the circulation. Macrophages interact with CTCs via α4-integrin-VCAM-1 ligation and transmit anti-apoptotic signal such as TRAIL to CTCs. In contrast, certain CTCs deficient for selectin ligands can roll and adhere to endothelial cells through heterotypic interaction with neutrophils. This interaction is mediated by β2-integrin and ICAM-1 expressed on neutrophils and CTCs, respectively. Additionally, CTCs can locally induce platelet aggregation. The deposition of platelets on CTCs prevents the damage caused by shear stress and immuno-surveillance.
Figure 2
Figure 2
E-selectin liposomal and nanotube-targeted delivery of doxorubicin to CTCs. (A) Schematic of E-selectin-coated liposome encapsulating doxorubicin (DOX). (B) Schematic of a microtube device for delivering DOX to captured CTCs.
Figure 3
Figure 3
Delivery of apoptotic signal to rolling cancer cells. (A) Schematic of a biomimetic device for inducing apoptosis in CTCs using E-selectin and TRAIL. (B) HL60 leukemic cells are eliminated by approximately 30% following perfusion through a device coated with both E-selectin and TRAIL. (C) Viability of normal mononuclear cells is not affected by the TRAIL-coating, confirming the specificity of TRAIL for malignant cells. (A–C) are reproduced from Rana et al., with permission. Rana et al., is Copyright 2008 Wiley Periodicals, Inc.).

Similar articles

Cited by

References

    1. Aktas B., Tewes M., Fehm T., Hauch S., Kimmig R., Kasimir-Bauer S. (2009). Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res. 11, R46 10.1186/bcr2333 - DOI - PMC - PubMed
    1. Allard W. J., Matera J., Miller M. C., Repollet M., Connelly M. C., Rao C., Tibbe A. G., Uhr J. W., Terstappen L. W. (2004). Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 10, 6897–6904 10.1158/1078-0432.CCR-04-0378 - DOI - PubMed
    1. Amirkhosravi A., Meyer T., Amaya M., Davila M., Mousa S. A., Robson T., Francis J. L. (2007). The role of tissue factor pathway inhibitor in tumor growth and metastasis. Semin. Thromb. Hemost. 33, 643–652 10.1055/s-2007-991531 - DOI - PubMed
    1. Amirkhosravi A., Meyer T., Chang J. Y., Amaya M., Siddiqui F., Desai H., Francis J. L. (2002). Tissue factor pathway inhibitor reduces experimental lung metastasis of B16 melanoma. Thromb. Haemost. 87, 930–936 - PubMed
    1. Bagge U., Blixt A., Strid K. G. (1983). The initiation of post-capillary margination of leukocytes: studies in vitro on the influence of erythrocyte concentration and flow velocity. Int. J. Microcirc. Clin. Exp. 2, 215–227 - PubMed