Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(6):e39917.
doi: 10.1371/journal.pone.0039917. Epub 2012 Jun 25.

HEMD: an integrated tool of human epigenetic enzymes and chemical modulators for therapeutics

Affiliations

HEMD: an integrated tool of human epigenetic enzymes and chemical modulators for therapeutics

Zhimin Huang et al. PLoS One. 2012.

Abstract

Background: Epigenetic mechanisms mainly include DNA methylation, post-translational modifications of histones, chromatin remodeling and non-coding RNAs. All of these processes are mediated and controlled by enzymes. Abnormalities of the enzymes are involved in a variety of complex human diseases. Recently, potent natural or synthetic chemicals are utilized to establish the quantitative contributions of epigenetic regulation through the enzymes and provide novel insight for developing new therapeutics. However, the development of more specific and effective epigenetic therapeutics requires a more complete understanding of the chemical epigenomic landscape.

Description: Here, we present a human epigenetic enzyme and modulator database (HEMD), the database which provides a central resource for the display, search, and analysis of the structure, function, and related annotation for human epigenetic enzymes and chemical modulators focused on epigenetic therapeutics. Currently, HEMD contains 269 epigenetic enzymes and 4377 modulators in three categories (activators, inhibitors, and regulators). Enzymes are annotated with detailed description of epigenetic mechanisms, catalytic processes, and related diseases, and chemical modulators with binding sites, pharmacological effect, and therapeutic uses. Integrating the information of epigenetic enzymes in HEMD should allow for the prediction of conserved features for proteins and could potentially classify them as ideal targets for experimental validation. In addition, modulators curated in HEMD can be used to investigate potent epigenetic targets for the query compound and also help chemists to implement structural modifications for the design of novel epigenetic drugs.

Conclusions: HEMD could be a platform and a starting point for biologists and medicinal chemists for furthering research on epigenetic therapeutics. HEMD is freely available at http://mdl.shsmu.edu.cn/HEMD/.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Web interface and back-end database in HEMD.
Key interface screenshots showing the interrelation of tools and user can directly view from “Browse” menu or start search by “Search” menu. All recorders are deposited in MySQL and some kind of important data for epigenetic therapeutics has been summarized in the lower part of the diagram.
Figure 2
Figure 2. Statistics on the epigenetic enzymes and modulators.
(A) Class distribution of epigenetic enzymes. (B) The classification of epigenetic enzymes related disease by WHO codes. A00–B99: Certain infectious and parasitic diseases, C00–D48: Neoplasms, D50–D89: Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism, E00–E90: Endocrine, nutritional and metabolic diseases, F00–F99: Mental and behavioural disorders, G00–G99: Diseases of the nervous system, H00–H59: Diseases of the eye and adnexa, H60–H95: Diseases of the ear and mastoid process, I00–I99: Diseases of the circulatory system, J00–J99: Diseases of the respiratory system, K00–K93: Diseases of the digestive system, L00–L99: Diseases of the skin and subcutaneous tissue, M00–M99: Diseases of the musculoskeletal system and connective tissue, N00–N99: Diseases of the genitourinary system, O00–O99: Pregnancy, childbirth and the puerperium, P00–P96: Certain conditions originating in the perinatal period, Q00–Q99: Congenital malformations, deformations and chromosomal abnormalities, R00–R99: Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified, S00–T98: Injury, poisoning and certain other consequences of external causes, U00–U99: Codes for special purposes. (C) Category distribution of epigenetic modulators. (D) History of discovering epigenetic modulators.

Similar articles

Cited by

References

    1. Bird A. Perceptions of epigenetics. Nature. 2007;447:396–398. - PubMed
    1. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128:635–638. - PubMed
    1. Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states. Science. 2010;330:612–616. - PMC - PubMed
    1. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705. - PubMed
    1. Zhou H, Hu H, Lai M. Non-coding RNAs and their epigenetic regulatory mechanisms. Biol Cell. 2010;102:645–655. - PubMed

Publication types