Risk estimation and risk prediction using machine-learning methods
- PMID: 22752090
- PMCID: PMC3432206
- DOI: 10.1007/s00439-012-1194-y
Risk estimation and risk prediction using machine-learning methods
Abstract
After an association between genetic variants and a phenotype has been established, further study goals comprise the classification of patients according to disease risk or the estimation of disease probability. To accomplish this, different statistical methods are required, and specifically machine-learning approaches may offer advantages over classical techniques. In this paper, we describe methods for the construction and evaluation of classification and probability estimation rules. We review the use of machine-learning approaches in this context and explain some of the machine-learning algorithms in detail. Finally, we illustrate the methodology through application to a genome-wide association analysis on rheumatoid arthritis.
Figures




Similar articles
-
Probability machines: consistent probability estimation using nonparametric learning machines.Methods Inf Med. 2012;51(1):74-81. doi: 10.3414/ME00-01-0052. Epub 2011 Sep 14. Methods Inf Med. 2012. PMID: 21915433 Free PMC article.
-
Supervised machine learning and logistic regression identifies novel epistatic risk factors with PTPN22 for rheumatoid arthritis.Genes Immun. 2010 Apr;11(3):199-208. doi: 10.1038/gene.2009.110. Epub 2010 Jan 21. Genes Immun. 2010. PMID: 20090771 Free PMC article.
-
MegaSNPHunter: a learning approach to detect disease predisposition SNPs and high level interactions in genome wide association study.BMC Bioinformatics. 2009 Jan 9;10:13. doi: 10.1186/1471-2105-10-13. BMC Bioinformatics. 2009. PMID: 19134182 Free PMC article.
-
Bayesian Networks for Risk Prediction Using Real-World Data: A Tool for Precision Medicine.Value Health. 2019 Apr;22(4):439-445. doi: 10.1016/j.jval.2019.01.006. Epub 2019 Mar 15. Value Health. 2019. PMID: 30975395 Review.
-
Probability estimation with machine learning methods for dichotomous and multicategory outcome: theory.Biom J. 2014 Jul;56(4):534-63. doi: 10.1002/bimj.201300068. Epub 2014 Jan 29. Biom J. 2014. PMID: 24478134 Review.
Cited by
-
Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis.Nat Commun. 2016 Aug 23;7:12460. doi: 10.1038/ncomms12460. Nat Commun. 2016. PMID: 27549343 Free PMC article.
-
Whole genome sequencing in support of wellness and health maintenance.Genome Med. 2013 Jun 27;5(6):58. doi: 10.1186/gm462. eCollection 2013. Genome Med. 2013. PMID: 23806097 Free PMC article.
-
Classification of imbalanced data using machine learning algorithms to predict the risk of renal graft failures in Ethiopia.BMC Med Inform Decis Mak. 2023 May 22;23(1):98. doi: 10.1186/s12911-023-02185-5. BMC Med Inform Decis Mak. 2023. PMID: 37217892 Free PMC article.
-
Deep Learning Framework for Complex Disease Risk Prediction Using Genomic Variations.Sensors (Basel). 2023 May 1;23(9):4439. doi: 10.3390/s23094439. Sensors (Basel). 2023. PMID: 37177642 Free PMC article.
-
The effect of Shengmai injection in patients with coronary heart disease in real world and its personalized medicine research using machine learning techniques.Front Pharmacol. 2023 Sep 14;14:1208621. doi: 10.3389/fphar.2023.1208621. eCollection 2023. Front Pharmacol. 2023. PMID: 37781710 Free PMC article.
References
-
- Anderson J. Separate sample logistic discrimination. Biometrika. 1972;59:19–35. doi: 10.1093/biomet/59.1.19. - DOI
-
- Arminger G, Enache D. Statistical models and artificial neural networks. In: Bock H, Polasek W, editors. Data analysis and information systems. Heidelberg: Springer; 1996. pp. 243–260.
-
- Arshadi N, Chang B, Kustra R. Predictive modeling in case–control single-nucleotide polymorphism studies in the presence of population stratification: a case study using Genetic Analysis Workshop 16 Problem 1 dataset. BMC Proc. 2009;3(Suppl 7):S60. doi: 10.1186/1753-6561-3-s7-s60. - DOI - PMC - PubMed
-
- Banerjee M, Ding Y, Noone A (2012) Identifying representative trees from ensembles. Stat Med 31:1601–1616. doi:10.1002/sim.4492 4 - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources