Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Mar 28;13 Suppl 4(Suppl 4):S1.
doi: 10.1186/1471-2105-13-S4-S1.

Accurate multiple sequence alignment of transmembrane proteins with PSI-Coffee

Affiliations

Accurate multiple sequence alignment of transmembrane proteins with PSI-Coffee

Jia-Ming Chang et al. BMC Bioinformatics. .

Abstract

Background: Transmembrane proteins (TMPs) constitute about 20~30% of all protein coding genes. The relative lack of experimental structure has so far made it hard to develop specific alignment methods and the current state of the art (PRALINE™) only manages to recapitulate 50% of the positions in the reference alignments available from the BAliBASE2-ref7.

Methods: We show how homology extension can be adapted and combined with a consistency based approach in order to significantly improve the multiple sequence alignment of alpha-helical TMPs. TM-Coffee is a special mode of PSI-Coffee able to efficiently align TMPs, while using a reduced reference database for homology extension.

Results: Our benchmarking on BAliBASE2-ref7 alpha-helical TMPs shows a significant improvement over the most accurate methods such as MSAProbs, Kalign, PROMALS, MAFFT, ProbCons and PRALINE™. We also estimated the influence of the database used for homology extension and show that highly non-redundant UniRef databases can be used to obtain similar results at a significantly reduced computational cost over full protein databases. TM-Coffee is part of the T-Coffee package, a web server is also available from http://tcoffee.crg.cat/tmcoffee and a freeware open source code can be downloaded from http://www.tcoffee.org/Packages/Stable/Latest.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Typical colour output (tm_html). In this example, the protein Or9a of Drosophila melanogaster and its orthologues of other Drosophila species were aligned with PSITM template. The colour code corresponds to prediction by HMMTOP, where yellow: in loop, red: TM helix, blue: out loop. Notably, the predicted topology of the Or9a set is consistent with the Benton et al.'s conclusion [20].
Figure 2
Figure 2
Line chart of the average TC respect to different e-value thresholds on UniRef50-TM database. The number of homologues is counted by summing all homologues found in eight families and plotted in log10 scale. The standard error of TC score cross eight families is the range of dash line. SP is skipped due to minor change respect to different e-value thresholds.

References

    1. Martin-Galiano AJ, Frishman D. Defining the fold space of membrane proteins: the CAMPS database. Proteins. 2006;64:906–922. doi: 10.1002/prot.21081. - DOI - PubMed
    1. Wallin E, von Heijne G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 1998;7:1029–1038. - PMC - PubMed
    1. Cserzo M, Bernassau JM, Simon I, Maigret B. New alignment strategy for transmembrane proteins. J Mol Biol. 1994;243:388–396. doi: 10.1006/jmbi.1994.1666. - DOI - PubMed
    1. Pirovano W, Feenstra KA, Heringa J. PRALINETM: a strategy for improved multiple alignment of transmembrane proteins. Bioinformatics. 2008;24:492–497. doi: 10.1093/bioinformatics/btm636. - DOI - PubMed
    1. Forrest LR, Tang CL, Honig B. On the accuracy of homology modeling and sequence alignment methods applied to membrane proteins. Biophys J. 2006;91:508–517. doi: 10.1529/biophysj.106.082313. - DOI - PMC - PubMed

Publication types

Substances

LinkOut - more resources