First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses
- PMID: 22534830
- DOI: 10.2967/jnumed.111.098608
First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses
Abstract
The recently introduced first integrated whole-body PET/MR scanner allows simultaneous acquisition of PET and MRI data in humans and, thus, may offer new opportunities, particularly regarding diagnostics in oncology. This scanner features major technologic differences from conventional PET/CT devices, including the replacement of photomultipliers with avalanche photodiodes and the need for MRI-based attenuation correction. The aim of this study was to evaluate the comparability of clinical performance between conventional PET/CT and PET/MR in patients with oncologic diseases.
Methods: Thirty-two patients with different oncologic diagnoses underwent a single-injection, dual-imaging protocol consisting of a PET/CT and subsequent PET/MR scan. PET/CT scans were performed according to standard clinical protocols (86 ± 8 min after injection of 401 ± 42 MBq of (18)F-FDG, 2 min/bed position). Subsequently (140 ± 24 min after injection), PET/MR was performed (4 min/bed position). PET images of both modalities were reconstructed iteratively. Attenuation and scatter correction as well as regional allocation of PET findings were performed using low-dose CT data for PET/CT and Dixon MRI sequences for PET/MR. PET/MR and PET/CT were compared visually by 2 teams of observers by rating the number and location of lesions suspicious for malignancy, as well as image quality and alignment. For quantitative comparison, standardized uptake values (SUVs) of the detected lesions and of different tissue types were assessed.
Results: Simultaneous PET/MR acquisition was feasible with high quality in short acquisition time (≤ 20 min). No significant difference was found between the numbers of suspicious lesions (n = 80) or lesion-positive patients (n = 20) detected with PET/MR or PET/CT. Anatomic allocation of PET/MR findings by means of the Dixon MRI sequence was comparable to allocation of PET/CT findings by means of low-dose CT. Quantitative evaluation revealed a high correlation between mean SUVs measured with PET/MR and PET/CT in lesions (ρ = 0.93) and background tissue (ρ = 0.92).
Conclusion: This study demonstrates, for what is to our knowledge the first time, that integrated whole-body PET/MR is feasible in a clinical setting with high quality and in a short examination time. The reliability of PET/MR was comparable to that of PET/CT in allowing the detection of hypermetabolic lesions suspicious for malignancy in patients with oncologic diagnoses. Despite different attenuation correction approaches, tracer uptake in lesions and background correlated well between PET/MR and PET/CT. The Dixon MRI sequences acquired for attenuation correction were found useful for anatomic allocation of PET findings obtained by PET/MR in the entire body. These encouraging results may form the foundation for future studies aiming to define the added value of PET/MR over PET/CT.
Similar articles
-
Integrated whole-body PET/MR hybrid imaging: clinical experience.Invest Radiol. 2013 May;48(5):280-9. doi: 10.1097/RLI.0b013e3182845a08. Invest Radiol. 2013. PMID: 23442775
-
Evaluation of feasibility and image quality of 68Ga-DOTATOC positron emission tomography/magnetic resonance in comparison with positron emission tomography/computed tomography in patients with neuroendocrine tumors.Invest Radiol. 2013 May;48(5):263-72. doi: 10.1097/RLI.0b013e31828234d0. Invest Radiol. 2013. PMID: 23385399
-
Comparison of whole-body PET/CT and PET/MRI in breast cancer patients: lesion detection and quantitation of 18F-deoxyglucose uptake in lesions and in normal organ tissues.Eur J Radiol. 2014 Feb;83(2):289-96. doi: 10.1016/j.ejrad.2013.11.002. Epub 2013 Nov 23. Eur J Radiol. 2014. PMID: 24331845
-
Whole-body magnetic resonance imaging and positron emission tomography-computed tomography in oncology.Top Magn Reson Imaging. 2007 Jun;18(3):193-202. doi: 10.1097/RMR.0b013e318093e6bo. Top Magn Reson Imaging. 2007. PMID: 17762383 Review.
-
[Application of MR/PET in oncologic imaging].Rofo. 2012 Sep;184(9):780-7. doi: 10.1055/s-0031-1299334. Epub 2012 May 22. Rofo. 2012. PMID: 22618473 Review. German.
Cited by
-
Evaluations of the performances of PET and MRI in a simultaneous PET/MRI instrument for pre-clinical imaging.EJNMMI Phys. 2022 Oct 8;9(1):70. doi: 10.1186/s40658-022-00483-x. EJNMMI Phys. 2022. PMID: 36209262 Free PMC article.
-
In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma.EMBO Mol Med. 2015 Apr;7(4):477-87. doi: 10.15252/emmm.201404698. EMBO Mol Med. 2015. PMID: 25736399 Free PMC article.
-
PET/MR: a paradigm shift.Cancer Imaging. 2013 Feb 27;13(1):36-52. doi: 10.1102/1470-7330.2013.0005. Cancer Imaging. 2013. PMID: 23446110 Free PMC article. Review.
-
PET/MR: Yet another Tesla?J Nucl Cardiol. 2017 Jun;24(3):1019-1031. doi: 10.1007/s12350-016-0665-2. Epub 2016 Sep 22. J Nucl Cardiol. 2017. PMID: 27659455 Review.
-
Diagnosing Lung Nodules on Oncologic MR/PET Imaging: Comparison of Fast T1-Weighted Sequences and Influence of Image Acquisition in Inspiration and Expiration Breath-Hold.Korean J Radiol. 2016 Sep-Oct;17(5):684-94. doi: 10.3348/kjr.2016.17.5.684. Epub 2016 Aug 23. Korean J Radiol. 2016. PMID: 27587957 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical