Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Mar 24:12:39.
doi: 10.1186/1471-2148-12-39.

Adaptive evolution and functional constraint at TLR4 during the secondary aquatic adaptation and diversification of cetaceans

Affiliations

Adaptive evolution and functional constraint at TLR4 during the secondary aquatic adaptation and diversification of cetaceans

Tong Shen et al. BMC Evol Biol. .

Abstract

Background: Cetaceans (whales, dolphins and porpoises) are a group of adapted marine mammals with an enigmatic history of transition from terrestrial to full aquatic habitat and rapid radiation in waters around the world. Throughout this evolution, the pathogen stress-response proteins must have faced challenges from the dramatic change of environmental pathogens in the completely different ecological niches cetaceans occupied. For this reason, cetaceans could be one of the most ideal candidate taxa for studying evolutionary process and associated driving mechanism of vertebrate innate immune systems such as Toll-like receptors (TLRs), which are located at the direct interface between the host and the microbial environment, act at the first line in recognizing specific conserved components of microorganisms, and translate them rapidly into a defense reaction.

Results: We used TLR4 as an example to test whether this traditionally regarded pattern recognition receptor molecule was driven by positive selection across cetacean evolutionary history. Overall, the lineage-specific selection test showed that the dN/dS (ω) values along most (30 out of 33) examined cetartiodactylan lineages were less than 1, suggesting a common effect of functional constraint. However, some specific codons made radical changes, fell adjacent to the residues interacting with lipopolysaccharides (LPS), and showed parallel evolution between independent lineages, suggesting that TLR4 was under positive selection. Especially, strong signatures of adaptive evolution on TLR4 were identified in two periods, one corresponding to the early evolutionary transition of the terrestrial ancestors of cetaceans from land to semi-aquatic (represented by the branch leading to whale + hippo) and from semi-aquatic to full aquatic (represented by the ancestral branch leading to cetaceans) habitat, and the other to the rapid diversification and radiation of oceanic dolphins.

Conclusions: This is the first study thus far to characterize the TLR gene in cetaceans. Our data present evidences that cetacean TLR4 has undergone adaptive evolution against the background of purifying selection in response to the secondary aquatic adaptation and rapid diversification in the sea. It is suggested that microbial pathogens in different environments are important factors that promote adaptive changes at cetacean TLR4 and new functions of some amino acid sites specialized for recognizing pathogens in dramatically contrasted environments to enhance the fitness for the adaptation and survival of cetaceans.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Positive selection at TLR4 across the cetacean phylogeny. Branches a to p correspond to those in supplementary Table S2. The ω value calculated by the free-ratio model is labeled along each branch. In some cases, zero synonymous substitutions lead to a ω value of infinity (n.a.). The estimated numbers of nonsynonymous and synonymous changes are shown in parentheses. The branches in red show strong evidence of undergoing positive selection. Amino acid changes were estimated by parsimony method, and every substitution of these sites is marked in blue. Six clades in which amino acid substitution occurred are filled with six different colors. The parallel amino acid changes are listed on the right of the corresponding terminal branches, while b, c, h, and l in parentheses stand for the internal branches on which parallel changes occurred. Amino acid positions (numbers) and parallel changes at each position were listed in the right part of the figure1. A = even-toed ungulates, B = river dolphins, C = oceanic dolphins, D = porpoises and white whales, E = sperm whales, F = baleen whales.
Figure 2
Figure 2
Average ω ratio of a 20-codon sliding window along cetacean TLR4 protein sequences. High values (ω > 1) indicate positive selection, whereas low values (ω < 1) indicate purifying selection. The black box indicates the transmembrane domain.
Figure 3
Figure 3
Distribution of positively selected codons in the three-dimensional structure of cetacean TLR4. The area important for ligand binding is squared in pink.

Similar articles

Cited by

References

    1. Medzhitov R, Janeway CA Jr. Innate Immunity: The virtues of a nonclonal system of recognition. Cell. 1997;91:295–298. doi: 10.1016/S0092-8674(00)80412-2. - DOI - PubMed
    1. Smith KD, Andersen-Nissen E, Hayashi F, Strobe K, Bergman MA, Barrett SL, Cookson BT, Aderem A. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat Immunol. 2004;4:1247–1253. - PubMed
    1. Mukherjee S, Sarkar-Roy N, Wagener DK, Majumder PP. Signatures of natural selection are not uniform across genes of innate immune system, but purifying selection is the dominant signature. Proc Natl Acad Sci USA. 2009;106:7073–7078. doi: 10.1073/pnas.0811357106. - DOI - PMC - PubMed
    1. Barreiro LB, Ben-Ali M, Quach H, Laval G, Patin E, Pickrell JK, Bouchier C, Tichit M, Neyrolles O, Gicquel B, Kidd JR, Kidd KK, Alcais A, Ragimbeau J, Pellegrini S, Abel L, Casanova JL, Quintana-Murci L. Evolutionary dynamics of human Toll-like receptors and their different contributions to host defense. PLoS Genet. 2009;5:e1000562. doi: 10.1371/journal.pgen.1000562. - DOI - PMC - PubMed
    1. Sackton TB, Lazzaro BP, Schlenke TA, Evans JD, Hultmark D, Clark AG. Dynamic evolution of the innate immune system in Drosophila. Nat Genet. 2007;39:1461–1468. doi: 10.1038/ng.2007.60. - DOI - PubMed

Publication types

Substances

LinkOut - more resources