The elementary events underlying force generation in neuronal lamellipodia
- PMID: 22355669
- PMCID: PMC3240973
- DOI: 10.1038/srep00153
The elementary events underlying force generation in neuronal lamellipodia
Abstract
We have used optical tweezers to identify the elementary events underlying force generation in neuronal lamellipodia. When an optically trapped bead seals on the lamellipodium membrane, Brownian fluctuations decrease revealing the underlying elementary events. The distribution of bead velocities has long tails with frequent large positive and negative values associated to forward and backward jumps occurring in 0.1-0.2 ms with varying amplitudes up to 20 nm. Jump frequency and amplitude are reduced when actin turnover is slowed down by the addition of 25 nM Jasplakinolide. When myosin II is inhibited by the addition of 20 μM Blebbistatin, jump frequency is reduced but to a lesser extent than by Jasplainolide. These jumps constitute the elementary events underlying force generation.
Figures
Similar articles
-
The role of myosin-II in force generation of DRG filopodia and lamellipodia.Sci Rep. 2015 Jan 19;5:7842. doi: 10.1038/srep07842. Sci Rep. 2015. PMID: 25598228 Free PMC article.
-
The role of membrane stiffness and actin turnover on the force exerted by DRG lamellipodia.Biophys J. 2012 Jun 6;102(11):2451-60. doi: 10.1016/j.bpj.2012.04.036. Epub 2012 Jun 5. Biophys J. 2012. PMID: 22713560 Free PMC article.
-
Force generation in lamellipodia is a probabilistic process with fast growth and retraction events.Biophys J. 2010 Mar 17;98(6):979-88. doi: 10.1016/j.bpj.2009.11.041. Biophys J. 2010. PMID: 20303855 Free PMC article.
-
Molecular mechanism of actin-dependent retrograde flow in lamellipodia of motile cells.Front Biosci. 1997 Jun 1;2:d260-70. doi: 10.2741/a189. Front Biosci. 1997. PMID: 9206973 Review.
-
The lamellipodium: where motility begins.Trends Cell Biol. 2002 Mar;12(3):112-20. doi: 10.1016/s0962-8924(01)02237-1. Trends Cell Biol. 2002. PMID: 11859023 Review.
Cited by
-
Stabilizing microtubules aids neurite structure and disrupts syncytia formation in human cytomegalovirus-infected human forebrain neurons.bioRxiv [Preprint]. 2024 Aug 19:2024.08.16.608340. doi: 10.1101/2024.08.16.608340. bioRxiv. 2024. PMID: 39229072 Free PMC article. Preprint.
-
The role of myosin-II in force generation of DRG filopodia and lamellipodia.Sci Rep. 2015 Jan 19;5:7842. doi: 10.1038/srep07842. Sci Rep. 2015. PMID: 25598228 Free PMC article.
-
Cell signaling experiments driven by optical manipulation.Int J Mol Sci. 2013 Apr 25;14(5):8963-84. doi: 10.3390/ijms14058963. Int J Mol Sci. 2013. PMID: 23698758 Free PMC article. Review.
-
Modeling persistence in mesenchymal cell motility using explicit fibers.Langmuir. 2014 May 20;30(19):5506-9. doi: 10.1021/la404832t. Epub 2014 May 6. Langmuir. 2014. PMID: 24800650 Free PMC article.
-
Shining Light in Mechanobiology: Optical Tweezers, Scissors, and Beyond.ACS Photonics. 2024 Mar 11;11(3):917-940. doi: 10.1021/acsphotonics.4c00064. eCollection 2024 Mar 20. ACS Photonics. 2024. PMID: 38523746 Free PMC article. Review.
References
-
- Pollard T. D. & Borisy G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003). - PubMed
-
- Huber A. B., Kolodkin A. L., Ginty D. D. & Cloutier J. F. Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu. Rev. Neurosci. 26, 509–563 (2003). - PubMed
-
- Landis S. C. Neuronal growth cones. Annu. Rev. Physiol. 45, 567–580 (1983). - PubMed
-
- Pollard T. D., Blanchoin L. & Mullins R. D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545–576 (2000). - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources