Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Aug;46(8):975-95.
doi: 10.3109/10715762.2012.667566. Epub 2012 Apr 23.

Reactions and reactivity of myeloperoxidase-derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids

Affiliations
Review

Reactions and reactivity of myeloperoxidase-derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids

David I Pattison et al. Free Radic Res. 2012 Aug.

Abstract

Myeloperoxidase (MPO) is recognised to play important roles both in the immune system and during the development of numerous human pathologies. MPO is released by activated neutrophils, monocytes and some tissue macrophages, where it catalyses the conversion of hydrogen peroxide to hypohalous acids (HOX; X = Cl, Br, SCN) in the presence of halide and pseudo-halide ions. The major reactive species produced by MPO under physiological conditions are hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN), with the ratio of these oxidants critically dependent on the concentration of thiocyanate ions (SCN⁻). The reactivity and selectivity of HOCl and HOSCN for biological targets are markedly different, indicating that SCN⁻ ions have the potential to modulate both the extent and nature of oxidative damage in vivo. This article reviews recent developments in our understanding of the role of SCN⁻ in modulating the formation of MPO-derived oxidants, particularly in respect to the differences in reaction kinetics and targets of HOCl compared to HOSCN and the ability of these two oxidants to induce damage in biological systems.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources