Association of influenza virus proteins with membrane rafts
- PMID: 22312341
- PMCID: PMC3265303
- DOI: 10.1155/2011/370606
Association of influenza virus proteins with membrane rafts
Abstract
Assembly and budding of influenza virus proceeds in the viral budozone, a domain in the plasma membrane with characteristics of cholesterol/sphingolipid-rich membrane rafts. The viral transmembrane glycoproteins hemagglutinin (HA) and neuraminidase (NA) are intrinsically targeted to these domains, while M2 is seemingly targeted to the edge of the budozone. Virus assembly is orchestrated by the matrix protein M1, binding to all viral components and the membrane. Budding progresses by protein- and lipid-mediated membrane bending and particle scission probably mediated by M2. Here, we summarize the experimental evidence for this model with emphasis on the raft-targeting features of HA, NA, and M2 and review the functional importance of raft domains for viral protein transport, assembly and budding, environmental stability, and membrane fusion.
Figures
Similar articles
-
Lateral Organization of Influenza Virus Proteins in the Budozone Region of the Plasma Membrane.J Virol. 2017 Apr 13;91(9):e02104-16. doi: 10.1128/JVI.02104-16. Print 2017 May 1. J Virol. 2017. PMID: 28202765 Free PMC article.
-
Influenza A virus hemagglutinin and neuraminidase mutually accelerate their apical targeting through clustering of lipid rafts.J Virol. 2014 Sep 1;88(17):10039-55. doi: 10.1128/JVI.00586-14. Epub 2014 Jun 25. J Virol. 2014. PMID: 24965459 Free PMC article.
-
Assembly and budding of influenza virus.Virus Res. 2004 Dec;106(2):147-65. doi: 10.1016/j.virusres.2004.08.012. Virus Res. 2004. PMID: 15567494 Free PMC article. Review.
-
Influenza virus morphogenesis and budding.Virus Res. 2009 Aug;143(2):147-61. doi: 10.1016/j.virusres.2009.05.010. Epub 2009 May 27. Virus Res. 2009. PMID: 19481124 Free PMC article. Review.
-
Acylation and cholesterol binding are not required for targeting of influenza A virus M2 protein to the hemagglutinin-defined budozone.FEBS Lett. 2014 Mar 18;588(6):1031-6. doi: 10.1016/j.febslet.2014.02.014. Epub 2014 Feb 20. FEBS Lett. 2014. PMID: 24561202
Cited by
-
Host Membranes as Drivers of Virus Evolution.Viruses. 2023 Aug 31;15(9):1854. doi: 10.3390/v15091854. Viruses. 2023. PMID: 37766261 Free PMC article.
-
Thermoplasmonic Vesicle Fusion Reveals Membrane Phase Segregation of Influenza Spike Proteins.Nano Lett. 2023 Apr 26;23(8):3377-3384. doi: 10.1021/acs.nanolett.3c00371. Epub 2023 Apr 11. Nano Lett. 2023. PMID: 37040311 Free PMC article.
-
Breathing and Tilting: Mesoscale Simulations Illuminate Influenza Glycoprotein Vulnerabilities.ACS Cent Sci. 2022 Dec 28;8(12):1646-1663. doi: 10.1021/acscentsci.2c00981. Epub 2022 Dec 8. ACS Cent Sci. 2022. PMID: 36589893 Free PMC article.
-
Structure Versus Stochasticity-The Role of Molecular Crowding and Intrinsic Disorder in Membrane Fission.J Mol Biol. 2018 Aug 3;430(16):2293-2308. doi: 10.1016/j.jmb.2018.03.024. Epub 2018 Apr 5. J Mol Biol. 2018. PMID: 29627460 Free PMC article. Review.
-
Influenza A Virus M2 Protein: Roles from Ingress to Egress.Int J Mol Sci. 2017 Dec 7;18(12):2649. doi: 10.3390/ijms18122649. Int J Mol Sci. 2017. PMID: 29215568 Free PMC article. Review.
References
-
- Shishkov AV, Bogacheva EN, Dolgov AA, et al. The in situ structural characterization of the influenza A virus matrix M1 protein within a virion. Protein and Peptide Letters. 2009;16(11):1407–1413. - PubMed
-
- Whittaker GR. Intracellular trafficking of influenza virus: clinical implications for molecular medicine. Expert Reviews in Molecular Medicine. 2001;2001:1–13. - PubMed
-
- Veit M, Schmidt MFG. Palmitoylation of influenza virus proteins. Berliner und Münchener Tierärztliche Wochenschrift. 2006;119(3-4):112–122. - PubMed
-
- Garten W, Klenk HD. Understanding influenza virus pathogenicity. Trends in Microbiology. 1999;7(3):99–100. - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources