Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Aug;29(7):579-83.
doi: 10.1177/0748233711433942. Epub 2012 Jan 31.

Aluminum phosphide-induced genetic and oxidative damages in rats: attenuation by Laurus nobilis leaf extract

Affiliations

Aluminum phosphide-induced genetic and oxidative damages in rats: attenuation by Laurus nobilis leaf extract

Hasan Türkez et al. Toxicol Ind Health. 2013 Aug.

Abstract

Aluminum phosphide (AlP) is a colorless, flammable, liquefied pesticide that is commonly used to control insects, nematodes, weeds, and pathogens in crops, forests, ornamental nurseries, and wood products. Early investigations of AlP-poisoned mammalian cells led to the proposed involvement of oxidative damage in its toxicity mechanism. Therefore, this study was aimed to evaluate the effect of Laurus nobilis (L) leaf extract (LNE) against AlP-induced genetic and oxidative damages in rats. Selected animals were assigned to four groups (n = 6), namely, group A: control (only distilled water is injected); group B: AlP (4 mg kg(-1) injected intraperitoneally (i.p.)); group C: LNE (200 mg kg(-1) injected i.p.), and group D: AlP plus LNE, respectively. The experimental period lasted for 14 successive days. Chromosomal aberrations (CAs) and micronucleus (MN) assay were used for monitoring genotoxic damage. In addition, biochemical parameters such as total antioxidant capacity (TAC) and total oxidative status (TOS) were examined in serum samples to determine oxidative damage. Our results indicated that AlP caused increase in CA and MN assay rates and alterations in TAC and TOS levels when compared with control group. On the contrary, LNE did not change the rates of both the analyzed cytogenetic end points and led to increase in TAC level. Moreover, we observed that LNE suppressed the genetic damage by AlP to bone marrow cells in vivo. Interestingly AlP-induced oxidative stress was also strongly reduced by LNE. The results of the present study indicated that the protective effect of LNE might be ascribable to its antioxidant and free radical scavenging properties.

Keywords: Laurus nobilis; aluminum phosphide; chromosomal aberrations; micronucleus; total antioxidant capacity; total oxidative status.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources