Single-tube linear DNA amplification for genome-wide studies using a few thousand cells
- PMID: 22281868
- DOI: 10.1038/nprot.2011.447
Single-tube linear DNA amplification for genome-wide studies using a few thousand cells
Abstract
Linear amplification of DNA (LinDA) by T7 polymerase is a versatile and robust method for generating sufficient amounts of DNA for genome-wide studies with minute amounts of cells. LinDA can be coupled to a great number of global profiling technologies. Indeed, chromatin immunoprecipitation coupled to massive parallel sequencing (ChIP-seq) has been achieved for transcription factors and epigenetic modification of chromatin histones with 1,000 to 5,000 cells. LinDA largely simplifies reChIP-seq experiments to monitor co-binding at chromatin target sites. The single-tube design of LinDA is ideal for handling ultrasmall amounts of DNA (<30 pg) and is compatible with automation. The actual hands-on working time is less than 6 h with one overnight reaction. The present protocol describes all materials and critical steps, and provides examples and controls for LinDA. Applications of LinDA for genome-wide analyses of biobank samples and for the study of chromatin conformation and nuclear architecture are in progress.
Similar articles
-
Single-tube linear DNA amplification (LinDA) for robust ChIP-seq.Nat Methods. 2011 Jun 5;8(7):565-7. doi: 10.1038/nmeth.1626. Nat Methods. 2011. PMID: 21642965
-
Amplification of pico-scale DNA mediated by bacterial carrier DNA for small-cell-number transcription factor ChIP-seq.BMC Genomics. 2015 Feb 5;16(1):46. doi: 10.1186/s12864-014-1195-4. BMC Genomics. 2015. PMID: 25652644 Free PMC article.
-
Quantitatively profiling genome-wide patterns of histone modifications in Arabidopsis thaliana using ChIP-seq.Methods Mol Biol. 2014;1112:177-93. doi: 10.1007/978-1-62703-773-0_12. Methods Mol Biol. 2014. PMID: 24478015
-
Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond.Cell Cycle. 2014;13(18):2847-52. doi: 10.4161/15384101.2014.949201. Cell Cycle. 2014. PMID: 25486472 Free PMC article. Review.
-
Genome-wide epigenomic profiling for biomarker discovery.Clin Epigenetics. 2016 Nov 21;8:122. doi: 10.1186/s13148-016-0284-4. eCollection 2016. Clin Epigenetics. 2016. PMID: 27895806 Free PMC article. Review.
Cited by
-
Low-Cell-Number Epigenome Profiling Aids the Study of Lens Aging and Hematopoiesis.Cell Rep. 2015 Nov 17;13(7):1505-1518. doi: 10.1016/j.celrep.2015.10.004. Epub 2015 Nov 5. Cell Rep. 2015. PMID: 26549448 Free PMC article.
-
FoxH1 represses miR-430 during early embryonic development of zebrafish via non-canonical regulation.BMC Biol. 2019 Jul 30;17(1):61. doi: 10.1186/s12915-019-0683-z. BMC Biol. 2019. PMID: 31362746 Free PMC article.
-
LaminA/C regulates epigenetic and chromatin architecture changes upon aging of hematopoietic stem cells.Genome Biol. 2018 Nov 7;19(1):189. doi: 10.1186/s13059-018-1557-3. Genome Biol. 2018. PMID: 30404662 Free PMC article.
-
Identification of the alternative sigma factor SigX regulon and its implications for Pseudomonas aeruginosa pathogenicity.J Bacteriol. 2014 Jan;196(2):345-56. doi: 10.1128/JB.01034-13. Epub 2013 Nov 1. J Bacteriol. 2014. PMID: 24187091 Free PMC article.
-
H3K4me3 epigenomic landscape derived from ChIP-Seq of 1,000 mouse early embryonic cells.Cell Res. 2015 Jan;25(1):143-7. doi: 10.1038/cr.2014.119. Epub 2014 Sep 2. Cell Res. 2015. PMID: 25178839 Free PMC article. No abstract available.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources